14,569 research outputs found

    Studies on the Localization and Mechanism of Alkaline Metal Activation of Protein Synthesis

    Get PDF
    Localization and mechanism of rat liver protein synthesis by alkali metals and ammonium ion

    On the Jacobi-Metric Stability Criterion

    Get PDF
    We investigate the exact relation existing between the stability equation for the solutions of a mechanical system and the geodesic deviation equation of the associated geodesic problem in the Jacobi metric constructed via the Maupertuis-Jacobi Principle. We conclude that the dynamical and geometrical approaches to the stability/instability problem are not equivalent.Comment: 14 pages, no figure

    Semiclassical dynamics and long time asymptotics of the central-spin problem in a quantum dot

    Full text link
    The spin of an electron trapped in a quantum dot is a promising candidate implementation of a qubit for quantum information processing. We study the central spin problem of the effect of the hyperfine interaction between such an electron and a large number of nuclear moments. Using a spin coherent path integral, we show that in this limit the electron spin evolution is well described by classical dynamics of both the nuclear and electron spins. We then introduce approximate yet systematic methods to analyze aspects of the classical dynamics, and discuss the importance of the exact integrability of the central spin Hamiltonian. This is compared with numerical simulation. Finally, we obtain the asymptotic long time decay of the electron spin polarization. We show that this is insensitive to integrability, and determined instead by the transfer of angular momentum to very weakly coupled spins far from the center of the quantum dot. The specific form of the decay is shown to depend sensitively on the form of the electronic wavefunction.Comment: 13 pages, 4 figures, accepted by PR

    Stabilization of grid frequency through dynamic demand control

    Get PDF
    Frequency stability in electricity networks is essential to the maintenance of supply quality and security. This paper investigates whether a degree of built-in frequency stability could be provided by incorporating dynamic demand control into certain consumer appliances. Such devices would monitor system frequency (a universally available indicator of supply-demand imbalance) and switch the appliance on or off accordingly, striking a compromise between the needs of the appliance and the grid. A simplified computer model of a power grid was created incorporating aggregate generator inertia, governor action and load-frequency dependence plus refrigerators with dynamic demand controllers. Simulation modelling studies were carried out to investigate the system's response to a sudden loss of generation, and to fluctuating wind power. The studies indicated a significant delay in frequency-fall and a reduced dependence on rapidly deployable backup generation

    Quantum effects in a half-polarized pyrochlore antiferromagnet

    Full text link
    We study quantum effects in a spin-3/2 antiferromagnet on the pyrochlore lattice in an external magnetic field, focusing on the vicinity of a plateau in the magnetization at half the saturation value, observed in CdCr2_2O4_4, and HgCr2_2O4_4. Our theory, based on quantum fluctuations, predicts the existence of a symmetry-broken state on the plateau, even with only nearest-neighbor microscopic exchange. This symmetry broken state consists of a particular arrangement of spins polarized parallel and antiparallel to the field in a 3:1 ratio on each tetrahedron. It quadruples the lattice unit cell, and reduces the space group from Fd3ˉmFd\bar{3}m to P4332P4_332. We also predict that for fields just above the plateau, the low temperature phase has transverse spin order, describable as a Bose-Einstein condensate of magnons. Other comparisons to and suggestions for experiments are discussed

    Degenerate perturbation theory of quantum fluctuations in a pyrochlore antiferromagnet

    Full text link
    We study the effect of quantum fluctuations on the half-polarized magnetization plateau of a pyrochlore antiferromagnet. We argue that an expansion around the easy axis limit is appropriate for discussing the ground state selection amongst the classically degenerate manifold of collinear states with a 3:1 ratio of spins parallel/anti-parallel to the magnetization axis. A general approach to the necessary degenerate perturbation theory is presented, and an effective quantum dimer model within this degenerate manifold is derived for arbitrary spin ss. We also generalize the existing semiclassical analysis of Hizi and Henley [Phys. Rev. B {\bf 73}, 054403 (2006)] to the easy axis limit, and show that both approaches agree at large ss. We show that under rather general conditions, the first non-constant terms in the effective Hamiltonian for s1s\geq 1 occur only at {\sl sixth} order in the transverse exchange coupling. For s3/2s\geq 3/2, the effective Hamiltonian predicts a magnetically ordered state. For s1s\leq 1 more exotic possibilities may be realized, though an analytical solution of the resulting quantum dimer model is not possible

    Ordering in a frustrated pyrochlore antiferromagnet proximate to a spin liquid

    Full text link
    We perform a general study of spin ordering on the pyrochlore lattice with a 3:1 proportionality of two spin polarizations. Equivalently, this describes valence bond solid conformations of a quantum dimer model on the diamond lattice. We determine the set of likely low temperature ordered phases, on the assumption that the ordering is weak, i.e the system is close to a ``U(1)'' quantum spin liquid in which the 3:1 proportionality is maintained but the spins are strongly fluctuating. The nature of the 9 ordered states we find is determined by a ``projective symmetry'' analysis. All the phases exhibit translational and rotational symmetry breaking, with an enlarged unit cell containing 4 to 64 primitive cells of the underlying pyrochlore. The simplest of the 9 phases is the same ``R'' state found earlier in a theoretical study of the ordering on the magnetization plateau in the S=3/2S=3/2 materials \cdaf and \hgaf. We suggest that the spin/dimer model proposed therein undergoes a direct transition from the spin liquid to the R state, and describe a field theory for the universal properties of this critical point, at zero and non-zero temperatures
    corecore