163 research outputs found

    Canonical theory of spherically symmetric spacetimes with cross-streaming null dusts

    Full text link
    The Hamiltonian dynamics of two-component spherically symmetric null dust is studied with regard to the quantum theory of gravitational collapse. The components--the ingoing and outgoing dusts--are assumed to interact only through gravitation. Different kinds of singularities, naked or "clothed", that can form during collapse processes are described. The general canonical formulation of the one-component null-dust dynamics by Bicak and Kuchar is restricted to the spherically symmetric case and used to construct an action for the two components. The transformation from a metric variable to the quasilocal mass is shown to simplify the mathematics. The action is reduced by a choice of gauge and the corresponding true Hamiltonian is written down. Asymptotic coordinates and energy densities of dust shells are shown to form a complete set of Dirac observables. The action of the asymptotic time translation on the observables is defined but it has been calculated explicitly only in the case of one-component dust (Vaidya metric).Comment: 15 pages, 3 figures, submitted to Phys. Rev.

    Wormholes and Ringholes in a Dark-Energy Universe

    Get PDF
    The effects that the present accelerating expansion of the universe has on the size and shape of Lorentzian wormholes and ringholes are considered. It is shown that, quite similarly to how it occurs for inflating wormholes, relative to the initial embedding-space coordinate system, whereas the shape of the considered holes is always preserved with time, their size is driven by the expansion to increase by a factor which is proportional to the scale factor of the universe. In the case that dark energy is phantom energy, which is not excluded by present constraints on the dark-energy equation of state, that size increase with time becomes quite more remarkable, and a rather speculative scenario is here presented where the big rip can be circumvented by future advanced civilizations by utilizing sufficiently grown up wormholes and ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.

    Conserved Quasilocal Quantities and General Covariant Theories in Two Dimensions

    Full text link
    General matterless--theories in 1+1 dimensions include dilaton gravity, Yang--Mills theory as well as non--Einsteinian gravity with dynamical torsion and higher power gravity, and even models of spherically symmetric d = 4 General Relativity. Their recent identification as special cases of 'Poisson--sigma--models' with simple general solution in an arbitrary gauge, allows a comprehensive discussion of the relation between the known absolutely conserved quantities in all those cases and Noether charges, resp. notions of quasilocal 'energy--momentum'. In contrast to Noether like quantities, quasilocal energy definitions require some sort of 'asymptotics' to allow an interpretation as a (gauge--independent) observable. Dilaton gravitation, although a little different in detail, shares this property with the other cases. We also present a simple generalization of the absolute conservation law for the case of interactions with matter of any type.Comment: 21 pages, LaTeX-fil

    Xylella fastidiosa gene expression analysis by DNA microarrays

    Get PDF
    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants

    Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification

    Full text link
    The search for tools to perform soil surveying faster and cheaper has led to the development of technological innovations such as remote sensing (RS) and the so-called spectral libraries in recent years. However, there are no studies which collate all the RS background to demonstrate how to use this technology for soil classification. The present study aims to describe a simple method of how to classify soils by the morphology of spectra associated with a quantitative view (400-2,500 nm). For this, we constructed three spectral libraries: (i) one for quantitative model performance; (ii) a second to function as the spectral patterns; and (iii) a third to serve as a validation stage. All samples had their chemical and granulometric attributes determined by laboratory analysis and prediction models were created based on soil spectra. The system is based on seven steps summarized as follows: i) interpretation of the spectral curve intensity; ii) observation of the general shape of curves; iii) evaluation of absorption features; iv) comparison of spectral curves between the same profile horizons; v) quantification of soil attributes by spectral library models; vi) comparison of a pre-existent spectral library with unknown profile spectra; vii) most probable soil classification. A soil cannot be classified from one spectral curve alone. The behavior between the horizons of a profile, however, was correlated with its classification. In fact, the validation showed 85 % accuracy between the Morphological Interpretation of Reflectance Spectrum (MIRS) method and the traditional classification, showing the importance and potential of a combination of descriptive and quantitative evaluations
    corecore