58 research outputs found

    EFFECT OF WETTING AGENT AND CARBIDE VOLUME FRACTION ON THE WEAR RESPONSE OF ALUMINUM MATRIX COMPOSITES REINFORCED BY WC NANOPARTICLES AND ALUMINIDE PARTICLES

    Get PDF
    Aluminum matrix composites were prepared by adding submicron sized WC particles into a melt of Al 1050 under mechanical stirring, with the scope to determine: (a) the most appropriate salt flux amongst KBF4 , K2 TiF6 , K3 AlF6 and Na3 AlF6 for optimum particle wetting and distribution and (b) the maximum carbide volume fraction (CVF) for optimum response to sliding wear. The nature of the wetting agent notably affected particle incorporation, with K2 TiF6 providing the greatest particle insertion. A uniform aluminide (in-situ) and WC (ex-situ) particle distribution was attained. Two different sliding wear mechanisms were identified for low CVFs (≤1.5%), and high CVFs (2.0%), depending on the extent of particle agglomeration

    Pulsed plasma deposition of Fe-C-Cr-W coating on high-Cr-cast iron: Effect of layered morphology and heat treatment on the microstructure and hardness

    Get PDF
    Pulsed plasma treatment was applied for surface modification and laminated coating deposition on 14.5 wt%-Cr cast iron. The scopes of the research were: (a) to obtain a microstructure gradient, (b) to study the relationship between cathode material and coating layer microstructure/hardness, and (c) to improve coating quality by applying post-deposition heat treatment. An electrothermal axial plasma accelerator with a gas-dynamic working regime was used as plasma source (4.0 kV, 10 kA). The layered structure was obtained by alternation of the cathode material (T1 - 18 wt% W high speed steel and 28 wt% Cr-cast iron). It was found that pulsed plasma treatment led to substrate sub-surface modification by the formation of an 11–18 μm thick remelted layer with very fine carbide particles that provided a smooth transition from the substrate into the coating (80–120 μm thick). The as-deposited coating of 500–655 HV0.05 hardness consisted of “martensite/austenite” layers which alternated with heat-affected layers (layers the microstructure of which was affected by the subsequent plasma pulses). Post-deposition heat treatment (isothermal holding at 950 °C for 2 h followed by oil quenching) resulted in precipitation of carbides M7C3, M3C2, M3C (in Cr-rich layers) and M6C, M2C (in W-rich layers). These carbides were found to be Cr/W depleted in favor of Fe. The carbide precipitation led to a substantial increase in the coating hardness to 1240–1445 HV0.05. The volume fraction of carbides in the coating notably increased relatively to the electrode materials

    Microstructure And Mechanical Properties Of Al-WC Composites

    Get PDF
    The scope of the research work is the production and characterization of Al matrix composites reinforced with WC ceramic nanoparticles. The synthesis process was powder metallurgy. The produced composites were examined as far as their microstructure and mechanical properties (resistance to wear, micro/macrohardness). Intermetallic phases (Al12W and Al2Cu) were identified in the microstrucutre. Al4C3 was not detected in the composites. Adding more than 5 wt% WC to the aluminum, microhardness and wear resistance exceed the values of Al alloy. Composites having weak interface bond performed the highest wear rate

    On the use of EBT3 film for relative dosimetry of kilovoltage X ray beams

    No full text
    EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries. © 2020 Associazione Italiana di Fisica Medic

    On the potential of 2D ion chamber arrays for high-dose rate remote afterloading brachytherapy quality assurance

    No full text
    Objective. To investigate the potential of 2D ion chamber arrays to serve as a standalone tool for the verification of source strength, positioning and dwell time, within the framework of 192Ir high-dose rate brachytherapy device quality assurance (QA). Approach. A commercially available ion chamber array was used. Fitting of a 2D Lorentzian peak function to experimental data from a multiple source dwell position irradiation on a frame-by-frame basis, facilitated tracking of the source center orthogonal projection on the array plane. For source air kerma strength verification, Monte Carlo simulation was employed to obtain a chamber array- and source-specific correction factor of calibration with a 6 MV photon beam. This factor converted the signal measured by each ion chamber element to air kerma in free space. A source positioning correction was also applied to lift potential geometry mismatch between experiment and Monte Carlo simulation. Main results. Spatial and temporal accuracy of source movement was verified within 0.5 mm and 0.02 s, respectively, in compliance with the test endpoints recommended by international professional societies. The source air kerma strength was verified experimentally within method uncertainties estimated as 1.44% (k = 1). The source positioning correction method employed did not introduce bias to experimental results of irradiations where source positioning was accurate. Development of a custom jig attachable to the chamber array for accurate and reproducible experimental set up would improve testing accuracy and obviate the need for source positioning correction in air kerma strength verification. Significance. Delivery of a single irradiation plan, optimized based on results of this work, to a 2D ion chamber array can be used for concurrent testing of source position, dwell time and air kerma strength, and the procedure can be expedited through automation. Chamber arrays merit further study in treatment planning QA and real time, in vivo dose verification. © 2022 Institute of Physics and Engineering in Medicine
    corecore