7,331 research outputs found
Programa nacional do livro didático e a astronomia na educação fundamental
Pode-se afirmar que o ensino de astronomia na educação fundamental, do 5º ao 9º ano, teve avanço considerável em termos de qualidade conceitual e temático, indicando que a reforma educacional brasileira, iniciada em 1996, no âmbito da proposição em livros didáticos, foi bastante significativa. Este resultado é mostrado nesta pesquisa através da análise de 4 coleções de livros didáticos de Ciências. O levantamento dos conteúdos da Astronomia mostra que estão presentes vários novos temas e abordagens na perspectiva das proposições dos Parâmetros Curriculares Nacionais, que regulamentam a reforma. O estudo dos erros de iconicidade, de conceituação e de relações revela uma grande diminuição de incorreções, evidenciando de certa maneira a influência de pesquisas em ensino de astronomia e a avaliação do Programa Nacional do Livro Didático, criado no âmbito da reforma
Susceptibility Amplitude Ratios Near a Lifshitz Point
The susceptibility amplitude ratio in the neighborhood of a uniaxial Lifshitz
point is calculated at one-loop level using field-theoretic and
-expansion methods. We use the Schwinger parametrization of the
propagator in order to split the quadratic and quartic part of the momenta, as
well as a new special symmetry point suitable for renormalization purposes. For
a cubic lattice (d = 3), we find the result .Comment: 7 pages, late
Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors
We determine the specific heat amplitude ratio near a -axial Lifshitz
point and show its universal character. Using a recent renormalization group
picture along with new field-theoretical -expansion techniques,
we established this amplitude ratio at one-loop order. We estimate the
numerical value of this amplitude ratio for and . The result is in
very good agreement with its experimental measurement on the magnetic material
. It is shown that in the limit it trivially reduces to the
Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review
A new picture of the Lifshitz critical behavior
New field theoretic renormalization group methods are developed to describe
in a unified fashion the critical exponents of an m-fold Lifshitz point at the
two-loop order in the anisotropic (m not equal to d) and isotropic (m=d close
to 8) situations. The general theory is illustrated for the N-vector phi^4
model describing a d-dimensional system. A new regularization and
renormalization procedure is presented for both types of Lifshitz behavior. The
anisotropic cases are formulated with two independent renormalization group
transformations. The description of the isotropic behavior requires only one
type of renormalization group transformation. We point out the conceptual
advantages implicit in this picture and show how this framework is related to
other previous renormalization group treatments for the Lifshitz problem. The
Feynman diagrams of arbitrary loop-order can be performed analytically provided
these integrals are considered to be homogeneous functions of the external
momenta scales. The anisotropic universality class (N,d,m) reduces easily to
the Ising-like (N,d) when m=0. We show that the isotropic universality class
(N,m) when m is close to 8 cannot be obtained from the anisotropic one in the
limit d --> m near 8. The exponents for the uniaxial case d=3, N=m=1 are in
good agreement with recent Monte Carlo simulations for the ANNNI model.Comment: 48 pages, no figures, two typos fixe
Structure of an Odorant-Binding protein from the Mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”
Background
The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission.
Methodology
Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 Å resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date.
Conclusion
The structure of AaegOBP1 ( = AaegOBP39) shares the common fold of insect OBPs with six α-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this “lid” may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH
Logarithmic periodicities in the bifurcations of type-I intermittent chaos
The critical relations for statistical properties on saddle-node bifurcations
are shown to display undulating fine structure, in addition to their known
smooth dependence on the control parameter. A piecewise linear map with the
type-I intermittency is studied and a log-periodic dependence is numerically
obtained for the average time between laminar events, the Lyapunov exponent and
attractor moments. The origin of the oscillations is built in the natural
probabilistic measure of the map and can be traced back to the existence of
logarithmically distributed discrete values of the control parameter giving
Markov partition. Reinjection and noise effect dependences are discussed and
indications are given on how the oscillations are potentially applicable to
complement predictions made with the usual critical exponents, taken from data
in critical phenomena.Comment: 4 pages, 6 figures, accepted for publication in PRL (2004
Transferring orbital and spin angular momenta of light to atoms
Light beams carrying orbital angular momentum, such as Laguerre-Gaussian
beams, give rise to the violation of the standard dipolar selection rules
during the interaction with matter yielding, in general, an exchange of angular
momentum larger than hbar per absorbed photon. By means of ab initio 3D
numerical simulations, we investigate in detail the interaction of a hydrogen
atom with intense Gaussian and Laguerre-Gaussian light pulses. We analyze the
dependence of the angular momentum exchange with the polarization, the orbital
angular momentum, and the carrier-envelope phase of light, as well as with the
relative position between the atom and the light vortex. In addition, a
quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum
mechanics is used to gain physical insight into the absorption of angular
momentum by the hydrogen atom
Designing peptide nanoparticles for efficient brain delivery
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood–brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain, from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain
A Combination of Recombinant Mycobacterium bovis BCG Strains Expressing Pneumococcal Proteins Induces Cellular and Humoral Immune Responses and Protects against Pneumococcal Colonization and Sepsis.
Pneumococcal diseases remain a substantial cause of mortality in young children in developing countries. The development of potentially serotype-transcending vaccines has been extensively studied; ideally, such a vaccine should include antigens that are able to induce protection against colonization (likely mediated by interleukin-17A [IL-17A]) and invasive disease (likely mediated by antibody). The use of strong adjuvants or alternative delivery systems that are able to improve the immunological response of recombinant proteins has been proposed but poses potential safety and practical concerns in children. We have previously constructed a recombinant Mycobacterium bovis BCG strain expressing a pneumococcal surface protein A (PspA)-PdT fusion protein (rBCG PspA-PdT) that was able to induce an effective immune response and protection against sepsis in a prime-boost strategy. Here, we constructed two new rBCG strains expressing the pneumococcal proteins SP 0148 and SP 2108, which confer IL-17A-dependent protection against pneumococcal colonization in mouse models. Immunization of mice with rBCG 0148 or rBCG 2108 in a prime-boost strategy induced IL-17A and gamma interferon (IFN-γ) production. The combination of these rBCG strains with rBCG PspA-PdT (rBCG Mix), followed by a booster dose of the combined recombinant proteins (rMix) induced an IL-17A response against SP 0148 and SP 2108 and a humoral response characterized by increased levels of IgG2c against PspA and functional antibodies against pneumolysin. Furthermore, immunization with the rBCG Mix prime/rMix booster (rBCG Mix/rMix) provides protection against pneumococcal colonization and sepsis. These results suggest the use of combined rBCG strains as a potentially serotype-transcending pneumococcal vaccine in a prime-boost strategy, which could provide protection against pneumococcal colonization and sepsis
Effects of curcumin in an orthotopic murine bladder tumor model
Cigarette smoking (CS) is the main risk factor for bladder cancer development. There are more than 100 carcinogens present in cigarette smoke. Among the potential mediators of CS-induced alterations is nuclear factor-kappa (NF-κB), which is responsible for the transcription of genes related to cell transformation, tumor promotion, angiogenesis, invasion and metastasis. Curcumin is a polyphenol compound derived from Curcuma longa that suppress cellular transformation, proliferation, invasion, angiogenesis, and metastasis by down regulating NF-κB and its regulated genes. The aim of our study was to assess the effects of curcumin in bladder urothelial carcinoma. We studied the effects of curcumin in vitro and in vivo using the orthotropic syngeneic bladder tumor animal model MB49. Curcumin promotes apoptosis of bladder tumor cells in vitro. In vivo tumors of animals treated with curcumin were significantly smaller as compared to controls. Using immunohistochemistry, we demonstrated a decrease in the expression of Cox-2 by 8% and Cyclin D1 by 13% in the animals treated with curcumin; both genes regulated by NF-κB and related to cell proliferation. In this study, we showed that curcumin acts in bladder urothelial cancer, possibly dowregulating NF-κB-related genes, and could be an option in the treatment of urothelial neoplasms. The results of our study suggest that further research is warranted to confirm our findings
- …