8,263 research outputs found

    How do venture capitalists inform their investors on the investment portfolio? An empirical investigation of the Belgian private equity market.

    Get PDF
    Venture capital investments are valued for a variety of reasons. In particular, venture capital managers periodically need to reconsider the valuation of the investment portfolio in view of their proper corporate disclosure activities. After all, investors in venture capital funds require such valuation information to assess the value of their investment in the venture capital fund and to appraise the performance of the venture capital fund's management. How the valuation is determined as well as what information disclosing the valuation process is reported remains obviously a controversial subject. Nonetheless, one can identify two distinct levels of guidance regarding the valuation and reporting problem with which venture capitalists are confronted. On the one hand, they are subject, just as any other company, to the accounting and corporate regulation. On the other hand, a set of more detailed and specific guidelines was issued by the industry itself. Whereas an earlier study (Thoen, 2002) discussed in detail the precise consequences following from this double set of prescriptions and recommendations for practitioners, the objective of the present study was to examine the actual business practice. In fact, we were interested in testing the extent to which Belgian venture capitalists comply with both sets of requirements and guidelines. Therefore, an empirical study was carried out by means of a survey, the main results of which are discussed here.Accounting; Companies; Disclosure; Empirical study; Industry; Information; Investment; Investment portfolio; Investments; Management; Managers; Market; Performance; Portfolio; Processes; Recommendations; Regulation; Reporting; Requirements; Studies; Valuation; Value; Venture capital;

    Plasma wake inhibition at the collision of two laser pulses in an underdense plasma

    Get PDF
    An electron injector concept for laser-plasma accelerator was developed in ref [1] and [2] ; it relies on the use of counter-propagating ultrashort laser pulses. In [2], the scheme is as follows: the pump laser pulse generates a large amplitude laser wakefield (plasma wave). The counter-propagating injection pulse interferes with the pump laser pulse to generate a beatwave pattern. The ponderomotive force of the beatwave is able to inject plasma electrons into the wakefield. We have studied this injection scheme using 1D Particle in Cell (PIC) simulations. The simulations reveal phenomena and important physical processes that were not taken into account in previous models. In particular, at the collision of the laser pulses, most plasma electrons are trapped in the beatwave pattern and cannot contribute to the collective oscillation supporting the plasma wave. At this point, the fluid approximation fails and the plasma wake is strongly inhibited. Consequently, the injected charge is reduced by one order of magnitude compared to the predictions from previous models.Comment: 4 pages, 4 figure

    Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas

    Full text link
    The interaction of two laser pulses in an underdense plasma has proven to be able to inject electrons in plasma waves, thus providing a stable and tunable source of electrons. Whereas previous works focused on the "beatwave" injection scheme in which two lasers with the same polarization collide in a plasma, this present letter studies the effect of polarization and more specifically the interaction of two colliding cross-polarized laser pulses. It is shown both theoretically and experimentally that electrons can also be pre-accelerated and injected by the stochastic heating occurring at the collision of two cross-polarized lasers and thus, a new regime of optical injection is demonstrated. It is found that injection with cross-polarized lasers occurs at higher laser intensities.Comment: 4 pages, 4 figure

    High-quality ion beams by irradiating a nano-structured target with a petawatt laser pulse

    Full text link
    We present a novel laser based ion acceleration scheme, where a petawatt circularly polarized laser pulse is shot on an ultra-thin (nano-scale) double-layer target. Our scheme allows the production of high-quality light ion beams with both energy and angular dispersion controllable by the target properties. We show that extraction of all electrons from the target by radiation pressure can lead to a very effective two step acceleration process for light ions if the target is designed correctly. Relativistic protons should be obtainable with pulse powers of a few petawatt. Careful analytical modeling yields estimates for characteristic beam parameters and requirements on the laser pulse quality, in excellent agreement with one and two-dimensional Particle-in Cell simulations.Comment: 18 pages, 7 figures, accepted in New. J. Phy

    A Study on Electro-Osmotic Consolidation of Soft Clays

    Get PDF
    The effects of an electro-osmotic treatment on a soft sensitive clay from Eastern Canada were examined based on the laboratory tests performed on undisturbed specimens. The interpretation of the tests focus on the non-homogeneity of the treatment, the influence of polarity reversal and strong induration which develops near the anode in addition to the consolidation

    Anticorrelation between Ion Acceleration and Nonlinear Coherent Structures from Laser-Underdense Plasma Interaction

    Get PDF
    In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.Comment: 4 pages, 5 figure

    Femtosecond x rays from laser-plasma accelerators

    Get PDF
    Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure
    corecore