9,445 research outputs found

    Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling

    Full text link
    A possibility of a metal-insulator transition in molecular conductors has been studied for systems composed of donor molecules and fully ionized anions with an incommensurate ratio close to 2:1 based on a one-dimensional extended Hubbard model, where the donor carriers are slightly deviated from quarter filling and under an incommensurate periodic potential from the anions. By use of the renormalization group method, interplay between commensurability energy on the donor lattice and that from the anion potential has been studied and it has been found that an "incommensurate Mott insulator" can be generated. This theoretical finding will explain the metal-insulator transition observed in (MDT-TS)(AuI2_2)0.441_{0.441}.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24 200

    Repetition and difference: Lefebvre, Le Corbusier and modernity's (im)moral landscape: a commentary

    Get PDF
    This article engages with the relationship between social theory, architectural theory and material culture. The article is a reply to an article in a previous volume of the journal in question (Smith, M. (2001) ‘Repetition and difference: Lefebvre, Le Corbusier and modernity’s (im)moral landscape’, Ethics, Place and Environment, 4(1), 31-34) and, consequently, is also a direct engagement with another academic's scholarship. It represents a critique of their work as well as a recasting of their ideas, arguing that the matter in question went beyond interpretative issues to a direct critique of another author's scholarship on both Le Corbusier and Lefebvre. A reply to my article from the author of the original article was carried in a later issue of the journal (Smith, M. (2002) ‘Ethical Difference(s): a Response to Maycroft on Le Corbusier and Lefebvre’, Ethics, Place and Environment, 5(3), 260-269)

    Femtosecond x rays from laser-plasma accelerators

    Get PDF
    Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure

    Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

    Get PDF
    Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100 terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, three-dimensional particle-in-cell modelling are examined. First, the Cartesian code VORPAL using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code CALDER-CIRC uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of the two simulations indicates that they are free of numerical artefacts. Both approaches thus retrieve physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver

    A Decoupled Parameters Estimators for in Nonlinear Systems Fault diagnosis by ANFIS

    Get PDF
    This paper presents a new and efficient Adaptive Neural Fuzzy Inference Systems approach for satellite’s attitude control systems (ACSs) fault diagnosis. The proposed approach formulates the fault modelling problem of system component into an on-line parameters estimation The learning  ability of the adaptive neural fuzzy inference system allow as to decoupling the effect of each fault from the estimation of the others.  Our solution provides a method to detect, isolate, and estimate various faults in system components, using Adaptive Fuzzy Inference Systems Parameter Estimators (ANFISPEs) that are designed and based on parameterizations related to each class of fault. Each ANFISPE estimates the corresponding unknown Fault Parameter (FP) that is further used for fault detection, isolation and identification purposes. Simulation results reveal the effectiveness of the developed FDI scheme of an ACSs actuators of a 3-axis stabilized satellite.DOI:http://dx.doi.org/10.11591/ijece.v2i2.22

    Performing Place: A Rhythmanalysis of the City of London

    Get PDF
    Through its focus on the City of London as a particular work sector and setting, this paper emphasizes the symbolic and material significance of place to understanding the lived experiences of power relations within organizational life. The socio-cultural and material aspects of the City are explored through an analysis of the rhythms of place, as well through interview data. Using a methodological approach based on Lefebvre’s Rhythmanalysis in order to develop an embodied, immersive sense of how the City is experienced as a workplace, the paper makes a methodological, empirical and theoretical contribution to an understanding of the way in which rhythms shape how place is performed. Using rhythmanalysis as a method, the paper shows the relationship between rhythms and the performances of place, foregrounding a subjective, embodied and experiential way of researching the places and spaces of organizing

    Stimulus statistics shape oscillations in nonlinear recurrent neural networks.

    Get PDF
    Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Transport criticality of the first-order Mott transition in a quasi-two-dimensional organic conductor, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    An organic Mott insulator, κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, was investigated by resistance measurements under continuously controllable He gas pressure. The first-order Mott transition was demonstrated by observation of clear jump in the resistance variation against pressure. Its critical endpoint at 38 K is featured by vanishing of the resistive jump and critical divergence in pressure derivative of resistance, 1RRP|\frac{1}{R}\frac{\partial R}{\partial P}|, which are consistent with the prediction of the dynamical mean field theory and have phenomenological correspondence with the liquid-gas transition. The present results provide the experimental basis for physics of the Mott transition criticality.Comment: 4 pages, 5 figure

    Repeated dietary exposure to low levels of domoic acid and problems with everyday memory: Research to public health outreach

    Get PDF
    Domoic Acid (DA) is a marine-based neurotoxin. Dietary exposure to high levels of DA via shellfish consumption has been associated with Amnesic Shellfish Poisoning, with milder memory decrements found in Native Americans (NAs) with repetitive, lower level exposures. Despite its importance for protective action, the clinical relevance of these milder memory problems remains unknown. The purpose of this study was to determine whether repeated, lower-level exposures to DA impact everyday memory (EM), i.e., the frequency of memory failures in everyday life. A cross-sectional sample of 60 NA men and women from the Pacific NW was studied with measures of dietary exposure to DA via razor clam (RC) consumption and EM. Findings indicated an association between problems with EM and elevated consumption of RCs with low levels of DA throughout the previous week and past year after controlling for age, sex, and education. NAs who eat a lot of RCs with presumably safe levels of DA are at risk for clinically significant memory problems. Public health outreach to minimize repetitive exposures are now in place and were facilitated by the use of community-based participatory research methods, with active involvement of state regulatory agencies, tribe leaders, and local physicians
    corecore