1,652 research outputs found

    Active multilayer mirrors for reflectance tuning at extreme ultraviolet (EUV) wavelengths

    Get PDF
    We propose an active multilayer mirror structure for EUV wavelengths which can be adjusted to compensate for reflectance changes. The multilayer structure tunes the reflectance via an integrated piezoelectric layer that can change its dimension due to an externally applied voltage. Here, we present design and optimization of the mirror structure for maximum reflectance tuning. In addition, we present preliminary results showing that the deposition of piezoelectric thin films with the requisite layer smoothness and crystal structure are possible. Finally, polarization switching of the smoothest piezoelectric film is presented

    Is there a role for prophylactic mesh in abdominal wall closure after emergency laparotomy? A systematic review and meta-analysis

    Get PDF
    Background Incisional hernias are a common complication of emergency laparotomy and are associated with significant morbidity. Recent studies have found a reduction in incisional hernias when mesh is placed prophylactically during abdominal closure in elective laparotomies. This systematic review will assess the safety and efficacy of prophylactic mesh placement in emergency laparotomy. Methods A systematic review was performed according to the PROSPERO registered protocol (CRD42018109283). Papers were dual screened for eligibility, and included when a comparison was made between closure with prophylactic mesh and closure with a standard technique, reported using a comparative design (i.e. case–control, cohort or randomised trial), where the primary outcome was incisional hernia. Bias was assessed using the Cochrane risk of bias in non-randomised studies tool. A meta-analysis of incisional hernia rate was performed to estimate risk ratio using a random effects model (Mantel–Haenszel approach). Results 332 studies were screened for eligibility, 29 full texts were reviewed and 2 non-randomised studies were included. Both studies were biased due to confounding factors, as closure technique was based on patient risk factors for incisional hernia. Both studies found significantly fewer incisional hernias in the mesh groups [3.2% vs 28.6% (p < 0.001) and 5.9% vs 33.3% (p = 0.0001)]. A meta-analysis of incisional hernia risk favoured prophylactic mesh closure [risk ratio 0.15 (95% CI 0.6–0.35, p < 0.001)]. Neither study found an association between mesh and infection or enterocutaneous fistula. Conclusion This review found that there are limited data to assess the effect or safety profile of prophylactic mesh in the emergency laparotomy setting. The current data cannot reliably assess the use of mesh due to confounding factors, and a randomised controlled trial is required to address this important clinical question

    Monopole Solutions in AdS Space

    Get PDF
    We find monopole solutions for a spontaneously broken SU(2)-Higgs system coupled to gravity in asymptotically anti-de Sitter space. We present new analytic and numerical results discussing,in particular, how the gravitational instability of self-gravitating monopoles depends on the value of the cosmological constant.Comment: 14 pages, 4 figures, Latex fil

    K\"{a}hler-Einstein metrics on strictly pseudoconvex domains

    Full text link
    The metrics of S. Y. Cheng and S.-T. Yau are considered on a strictly pseudoconvex domains in a complex manifold. Such a manifold carries a complete K\"{a}hler-Einstein metric if and only if its canonical bundle is positive. We consider the restricted case in which the CR structure on M\partial M is normal. In this case M must be a domain in a resolution of the Sasaki cone over M\partial M. We give a condition on a normal CR manifold which it cannot satisfy if it is a CR infinity of a K\"{a}hler-Einstein manifold. We are able to mostly determine those normal CR 3-manifolds which can be CR infinities. Many examples are given of K\"{a}hler-Einstein strictly pseudoconvex manifolds on bundles and resolutions.Comment: 30 pages, 1 figure, couple corrections, improved a couple example

    Stability of Subsequent-to-Leading-Logarithm Corrections to the Effective Potential for Radiative Electroweak Symmetry Breaking

    Full text link
    We demonstrate the stability under subsequent-to-leading logarithm corrections of the quartic scalar-field coupling constant λ\lambda and the running Higgs boson mass obtained from the (initially massless) effective potential for radiatively broken electroweak symmetry in the single-Higgs-Doublet Standard Model. Such subsequent-to-leading logarithm contributions are systematically extracted from the renormalization group equation considered beyond one-loop order. We show λ\lambda to be the dominant coupling constant of the effective potential for the radiatively broken case of electroweak symmetry. We demonstrate the stability of λ\lambda and the running Higgs boson mass through five orders of successively subleading logarithmic corrections to the scalar-field-theory projection of the effective potential for which all coupling constants except the dominant coupling constant λ\lambda are disregarded. We present a full next-to-leading logarithm potential in the three dominant Standard Model coupling constants (tt-quark-Yukawa, αs\alpha_s, and λ\lambda) from these coupling constants' contribution to two loop β\beta- and γ\gamma-functions. Finally, we demonstrate the manifest order-by-order stability of the physical Higgs boson mass in the 220-231 GeV range. In particular, we obtain a 231 GeV physical Higgs boson mass inclusive of the tt-quark-Yukawa and αs\alpha_s coupling constants to next-to-leading logarithm order, and inclusive of the smaller SU(2)×U(1)SU(2)\times U(1) gauge coupling constants to leading logarithm order.Comment: 21 pages, latex2e, 2 eps figures embedded in latex file. Updated version contains expanded analysis in Section

    Conjectures for Large N Superconformal N=4 Chiral Primary Four Point Functions

    Full text link
    An expression for the four point function for half-BPS operators belonging to the [0,p,0] SU(4) representation in N=4 superconformal theories at strong coupling in the large N limit is suggested for any p. It is expressed in terms of the four point integrals defined by integration over AdS_5 and agrees with, and was motivated by, results for p=2,3,4 obtained via the AdS/CFT correspondence. Using crossing symmetry and unitarity, the detailed form is dictated by the requirement that at large N the contribution of long multiplets with twist less than 2p, which do not have anomalous dimensions, should cancel corresponding free field contributions.Comment: 50 pages, 1 figure, uses harvmac, version 2 extra reference, minor change

    Some Systematics of the Coupling Constant Dependence of N=4 Yang-Mills

    Full text link
    The operator, O_\tau, that generates infinitesimal changes of the coupling constant in N=4 Yang-Mills sits in the same supermultiplet as the superconformal currents. We show how superconformal current Ward identities determine a class of terms in the operator product expansion of O_\tau with any other operator. In certain cases, this leads to constraints on the coupling dependence of correlation functions in N=4 Yang-Mills. As an application, we demonstrate the exact non-renormalization of two and certain three-point correlation functions of BPS operators.Comment: 56 pages, LaTeX; amended and expanded arguments, added reference

    Matching NLO parton shower matrix element with exact phase space: case of W -> l nu (gamma) and gamma^* -> pi^+pi^-(gamma)

    Full text link
    The PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Momenta are generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on an exact multiphoton phase space. Crude matrix element is obtained by iteration of a universal multidimensional kernel. It ensures exact distribution in the soft photon region. Algorithm is compatible with exclusive exponentiation. To evaluate the program's precision, it is necessary to control the kernel with the help of perturbative results. If available, kernel is constructed from the exact first order matrix element. This ensures that all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the W -> l nu and gamma^* -> pi^+ pi^- decays. The Born level cross sections for both processes approach zero in some points of the phase space. A process dependent compensating weight is constructed to incorporate the exact matrix element, but is recommended for use in tests only. In the hard photon region, where scalar QED is not expected to be reliable, the compensating weight for gamma^* decay can be large. With respect to the total rate, the effect remains at the permille level. It is nonetheless of interest. The terms leading to the effect are analogous to some terms appearing in QCD. The present paper can be understood either as a contribution to discussion on how to match two collinear emission chains resulting from charged sources in a way compatible with the exact and complete phase space, exclusive exponentiation and the first order matrix element of QED (scalar QED), or as the practical study of predictions for accelerator experiments.Comment: 24 page
    corecore