1,780 research outputs found

    Rejoinder on "Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices"

    Full text link
    It is shown that the arguments in the reply of Z.-D. Zhang (arXiv:0812.0194) to the comment arXiv:0811.1802 defending his conjectures in arXiv:0705.1045 are invalid. His conjectures have been thoroughly disproved.Comment: LaTeX2e, 2 pages, added responses to arXiv:0812.0194v3 and arXiv:0812.0194v

    Phase transitions in BaTiO3_3 from first principles

    Full text link
    We develop a first-principles scheme to study ferroelectric phase transitions for perovskite compounds. We obtain an effective Hamiltonian which is fully specified by first-principles ultra-soft pseudopotential calculations. This approach is applied to BaTiO3_3, and the resulting Hamiltonian is studied using Monte Carlo simulations. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. The order-disorder vs.\ displacive character of the transitions and the roles played by different interactions are discussed.Comment: 13 page

    The fermi arc and fermi pocket in cuprates in a short-range diagonal stripe phase

    Full text link
    In this paper we studied the fermi arc and the fermi pocket in cuprates in a short-range diagonal stripe phase with wave vectors (7π/8,7π/8)(7\pi/8, 7\pi/8), which reproduce with a high accuracy the positions and sizes of the fermi arc and fermi pocket and the superstructure in cuprates observed by Meng et al\cite{Meng}. The low-energy spectral function indicates that the fermi pocket results from the main band and the shadow band at the fermi energy. Above the fermi energy the shadow band gradually departs away from the main band, leaving a fermi arc. Thus we conclude that the fermi arc and fermi pocket can be fully attributed to the stripe phase but has nothing to do with pairing. Incorporating a d-wave pairing potential in the stripe phase the spectral weight in the antinodal region is removed, leaving a clean fermi pocket in the nodal region.Comment: 5 pages, 6 figure

    Thermal phenomenology of hadrons from 200 AGeV S+S collisions

    Full text link
    We develop a complete and consistent description for the hadron spectra from heavy ion collisions in terms of a few collective variables, in particular temperature, longitudinal and transverse flow. To achieve a meaningful comparison with presently available data, we also include the resonance decays into our picture. To disentangle the influences of transverse flow and resonance decays in the mTm_T-spectra, we analyse in detail the shape of the mTm_T-spectra.Comment: 31 pages, 13 figs in seperate uuencoded file, for LaTeX, epsf.sty and dvips, TPR-93-16 and BNL-(no number yet

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page

    Language independent on-off voice over IP source model with lognormal transitions

    Get PDF
    The recent explosive growth of voice over IP (VoIP) solutions calls for accurate modelling of VoIP traffic. This study presents measurements of ON and OFF periods of VoIP activity from a significantly large database of VoIP call recordings consisting of native speakers speaking in some of the world's most widely spoken languages. The impact of the languages and the varying dynamics of caller interaction on the ON and OFF period statistics are assessed. It is observed that speaker interactions dominate over language dependence which makes monologue-based data unreliable for traffic modelling. The authors derive a semi-Markov model which accurately reproduces the statistics of composite dialogue measurements

    Anisotropy of the Upper Critical Field and Critical Current in Single Crystal MgB2_2

    Get PDF
    We report on specific heat, high magnetic field transport and ac−ac-susceptibility measurements on magnesium diboride single crystals. The upper critical field Hc2H_{c2} for magnetic fields perpendicular and parallel to the Mg and B planes is presented for the first time in the entire temperature range. A very different temperature dependence has been observed in the two directions which yields to a temperature dependent anisotropy with Γ∌\Gamma \sim 5 at low temperatures and about 2 near TcT_c. A peak effect is observed in susceptibility measurements for H∌H \sim 2 T parallel to the c−c-axis and the critical current density presnts a sharp maximum for HH parallel to the ab-plane.Comment: 6 pages, 5 figure

    Flux-lattice melting in two-dimensional disordered superconductors

    Full text link
    The flux line lattice melting transition in two-dimensional pure and disordered superconductors is studied by a Monte Carlo simulation using the lowest Landau level approximation and quasi-periodic boundary condition on a plane. The position of the melting line was determined from the diffraction pattern of the superconducting order parameter. In the clean case we confirmed the results from earlier studies which show the existence of a quasi-long range ordered vortex lattice at low temperatures. Adding frozen disorder to the system the melting transition line is shifted to slightly lower fields. The correlations of the order parameter for translational long range order of the vortex positions seem to decay slightly faster than a power law (in agreement with the theory of Carpentier and Le Doussal) although a simple power law decay cannot be excluded. The corresponding positional glass correlation function decays as a power law establishing the existence of a quasi-long range ordered positional glass formed by the vortices. The correlation function characterizing a phase coherent vortex glass decays however exponentially ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    IMRT beam angle optimization using electromagnetism-like algorithm

    Get PDF
    The selection of appropriate beam irradiation directions in radiotherapy – beam angle optimization (BAO) problem – is very impor- tant for the quality of the treatment, both for improving tumor irradia- tion and for better organs sparing. However, the BAO problem is still not solved satisfactorily and, most of the time, beam directions continue to be manually selected in clinical practice which requires many trial and error iterations between selecting beam angles and computing ïŹ‚uence patterns until a suitable treatment is achieved. The objective of this pa- per is to introduce a new approach for the resolution of the BAO problem, using an hybrid electromagnetism-like algorithm with descent search to tackle this highly non-convex optimization problem. Electromagnetism- like algorithms are derivative-free optimization methods with the ability to avoid local entrapment. Moreover, the hybrid electromagnetism-like algorithm with descent search has a high ability of producing descent directions. A set of retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra is used to discuss the beneïŹts of the proposed algorithm for the optimization of the BAO problem.Fundação para a CiĂȘncia e a Tecnologia (FCT
    • 

    corecore