84 research outputs found

    Bioengineered lungs generated from human iPSCs‐derived epithelial cells on native extracellular matrix

    Full text link
    The development of an alternative source for donor lungs would change the paradigm of lung transplantation. Recent studies have demonstrated the potential feasibility of using decellularized lungs as scaffolds for lung tissue regeneration and subsequent implantation. However, finding a reliable cell source and the ability to scale up for recellularization of the lung scaffold still remain significant challenges. To explore the possibility of regeneration of human lung tissue from stem cells in vitro, populations of lung progenitor cells were generated from human iPSCs. To explore the feasibility of producing engineered lungs from stem cells, we repopulated decellularized human lung and rat lungs with iPSC‐derived epithelial progenitor cells. The iPSCs‐derived epithelial progenitor cells lined the decellularized human lung and expressed most of the epithelial markers when were cultured in a lung bioreactor system. In decellularized rat lungs, these human‐derived cells attach and proliferate in a manner similar to what was observed in the decellularized human lung. Our results suggest that repopulation of lung matrix with iPSC‐derived lung epithelial cells may be a viable strategy for human lung regeneration and represents an important early step toward translation of this technology.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/1/term2589.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/2/term2589_am.pd

    Construction of Vascular Tissues with Macro-Porous Nano-Fibrous Scaffolds and Smooth Muscle Cells Enriched from Differentiated Embryonic Stem Cells

    Get PDF
    Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications

    Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts

    Get PDF
    It was our objective to study the role of mechanical stimulation on fibronectin (FN) reorganization and recruitment by exposing fibroblasts to shear fluid flow and equibiaxial stretch. Mechanical stimulation was also combined with a Rho inhibitor to probe their coupled effects on FN. Mechanically stimulated cells revealed a localization of FN around the cell periphery as well as an increase in FN fibril formation. Mechanical stimulation coupled with chemical stimulation also revealed an increase in FN fibrils around the cell periphery. Complimentary to this, fibroblasts exposed to fluid shear stress structurally rearranged pre-coated surface FN, but unstimulated and stretched cells did not. These results show that mechanical stimulation directly affected FN reorganization and recruitment, despite perturbation by chemical stimulation. Our findings will help elucidate the mechanisms of FN biosynthesis and organization by furthering the link of the role of mechanics with FN

    Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function

    Get PDF
    Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair

    Self-Assembling Peptide Nanofiber Scaffolds Accelerate Wound Healing

    Get PDF
    Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP) nanofiber scaffold and Epidermal Growth Factor (EGF). This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE) tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair

    A Combined Synthetic-Fibrin Scaffold Supports Growth and Cardiomyogenic Commitment of Human Placental Derived Stem Cells

    Get PDF
    Aims: A potential therapy for myocardial infarction is to deliver isolated stem cells to the infarcted site. A key issue with this therapy is to have at one\u27s disposal a suitable cell delivery system which, besides being able to support cell proliferation and differentiation, may also provide handling and elastic properties which do not affect cardiac contractile function. In this study an elastic scaffold, obtained combining a poly(ether)urethane-polydimethylsiloxane (PEtU-PDMS) semi-interpenetrating polymeric network (s-IPN) with fibrin, was used as a substrate for in vitro studies of human amniotic mesenchymal stromal cells (hAMSC) growth and differentiation. Methodology/Principal Findings: After hAMSC seeding on the fibrin side of the scaffold, cell metabolic activity and proliferation were evaluated by WST-1 and bromodeoxyuridine assays. Morphological changes and mRNAs expression for cardiac differentiation markers in the hAMSCs were examined using immunofluorescence and RT-PCR analysis. The beginning of cardiomyogenic commitment of hAMSCs grown on the scaffold was induced, for the first time in this cell population, by a nitric oxide (NO) treatment. Following NO treatment hAMSCs show morphological changes, an increase of the messenger cardiac differentiation markers [troponin I (TnI) and NK2 transcription factor related locus 5 (Nkx2.5)] and a modulation of the endothelial markers [vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR)]. Conclusions/Significance: The results of this study suggest that the s-IPN PEtU-PDMS/fibrin combined scaffold allows a better proliferation and metabolic activity of hAMSCs cultured up to 14 days, compared to the ones grown on plastic dishes. In addition, the combined scaffold sustains the beginning of hAMSCs differentiation process towards a cardiomyogenic lineage

    The beat goes on

    No full text
    corecore