3,652 research outputs found

    Anharmonicity due to Electron-Phonon Coupling in Magnetite

    Full text link
    We present the results of inelastic x-ray scattering for magnetite and analyze the energies and spectral widths of the phonon modes with different symmetries in a broad range of temperature 125<T<293 K. The phonon modes with X_4 and Delta_5 symmetries broaden in a nonlinear way with decreasing temperature when the Verwey transition is approached. It is found that the maxima of phonon widths occur away from high-symmetry points which indicates the incommensurate character of critical fluctuations. Strong phonon anharmonicity induced by electron-phonon coupling is discovered within ab initio calculations which take into account local Coulomb interactions at Fe ions. It (i) explains observed anomalous phonon broadening, and (ii) demonstrates that the Verwey transition is a cooperative phenomenon which involves a wide spectrum of phonons coupled to charge fluctuations condensing in the low-symmetry phase.Comment: 5 pages, 5 figures, accepted in Physical Review Letter

    Ag on Ge(111): 2D X-ray structure analysis of the (Wurzel)3 x (Wurzel)3 superstructure

    Get PDF
    We have studied the Ag/Ge(111)(Wurzel)3 x (Wurzel)3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94+-0.04°A with the centers of the trimers being located at the origins of the (Wurzel)3 x (Wurzel)3 lattice. The Ag layer is incomplete and at least one substrate layer is distorted

    Short-Range Correlations in Magnetite above the Verwey Temperature

    Get PDF
    Magnetite, Fe3_3O4_4, is the first magnetic material discovered and utilized by mankind in Ancient Greece, yet it still attracts attention due to its puzzling properties. This is largely due to the quest for a full and coherent understanding of the Verwey transition that occurs at TV=124T_V=124 K and is associated with a drop of electric conductivity and a complex structural phase transition. A recent detailed analysis of the structure, based on single crystal diffraction, suggests that the electron localization pattern contains linear three-Fe-site units, the so-called trimerons. Here we show that whatever the electron localization pattern is, it partially survives up to room temperature as short-range correlations in the high-temperature cubic phase, easily discernible by diffuse scattering. Additionally, {\it ab initio} electronic structure calculations reveal that characteristic features in these diffuse scattering patterns can be correlated with the Fermi surface topology.Comment: 7 pages, 6 figure

    Russet Susceptibility in Apple Is Associated with Skin Cells that Are Larger, More Variable in Size, and of Reduced Fracture Strain

    Get PDF
    Russeting is an economically important surface disorder in apple (Malus × domestica Borkh). Indirect evidence suggests an irregular skin structure may be the cause of the phenomenon. The objective of this study was to characterize epidermal and hypodermal cell morphology and the mechanical properties of the skins of apple cultivars of differing russet susceptibility. Dimensions of epidermal and hypodermal cells were determined using microscopy. Stiffness (S), maximum force (Fmax), and maximum strain (εmax) at failure were quantified using uniaxial tensile tests of skin strips. Particularly during early fruit development, epidermal cells (EC) and hypodermal cells (HC) in russet non-susceptible cultivars occurred in greater numbers per unit area than in russet-susceptible ones. The EC and HC were lower in height, shorter in length, and of reduced tangential surface area. There were little differences in S or Fmax between non-susceptible and susceptible cultivars. However, the εmax were higher for the skins of non-susceptible cultivars, than for those of susceptible ones. This difference was larger for the young than for the later growth stages. It is concluded that russet-susceptible cultivars generally have larger cells and a wider distribution of cell sizes for both EC and HC. These result in decreased εmax for the skin during early fruit development when russet susceptibility is high. This increases the chances of skin failures which is known to trigger russeting

    An Investigation of Monotonic Transducers for Large-Scale Automatic Speech Recognition

    Full text link
    The two most popular loss functions for streaming end-to-end automatic speech recognition (ASR) are the RNN-Transducer (RNN-T) and the connectionist temporal classification (CTC) objectives. Both perform an alignment-free training by marginalizing over all possible alignments, but use different transition rules. Between these two loss types we can classify the monotonic RNN-T (MonoRNN-T) and the recently proposed CTC-like Transducer (CTC-T), which both can be realized using the graph temporal classification-transducer (GTC-T) loss function. Monotonic transducers have a few advantages. First, RNN-T can suffer from runaway hallucination, where a model keeps emitting non-blank symbols without advancing in time, often in an infinite loop. Secondly, monotonic transducers consume exactly one model score per time step and are therefore more compatible and unifiable with traditional FST-based hybrid ASR decoders. However, the MonoRNN-T so far has been found to have worse accuracy than RNN-T. It does not have to be that way, though: By regularizing the training - via joint LAS training or parameter initialization from RNN-T - both MonoRNN-T and CTC-T perform as well - or better - than RNN-T. This is demonstrated for LibriSpeech and for a large-scale in-house data set.Comment: Submitted to Interspeech 202

    Brain transcriptomes of honey bees (Apis mellifera) experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae.

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Regulation of gene expression in the brain plays an important role in behavioral plasticity and decision making in response to external stimuli. However, both can be severely affected by environmental factors, such as parasites and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-infection and interaction have been suggested as major components that significantly impaired social behavior and survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen cell virus (BQCV), and the Microsporidia Nosema ceranae, and explored gene expression changes in brains upon single infections and co-infections. Our data provide an important resource for research on honey bee diseases, and more generally on insect host-pathogen and pathogen-pathogen interactions. Raw and processed data are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE81664.Sequencing was performed thanks to the EU-funded 7th Framework project BEE DOC, Grant Agreement 244956. The authors thank Maureen Labarussias for technical support during bee experiments and preparation for sequencing
    • …
    corecore