132 research outputs found
Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game
We study the variant of the stable marriage problem in which the preferences
of the agents are allowed to include indifferences. We present a mechanism for
producing Pareto-stable matchings in stable marriage markets with indifferences
that is group strategyproof for one side of the market. Our key technique
involves modeling the stable marriage market as a generalized assignment game.
We also show that our mechanism can be implemented efficiently. These results
can be extended to the college admissions problem with indifferences
Manipulation Strategies for the Rank Maximal Matching Problem
We consider manipulation strategies for the rank-maximal matching problem. In
the rank-maximal matching problem we are given a bipartite graph such that denotes a set of applicants and a set of posts. Each
applicant has a preference list over the set of his neighbours in
, possibly involving ties. Preference lists are represented by ranks on the
edges - an edge has rank , denoted as , if post
belongs to one of 's -th choices. A rank-maximal matching is one in which
the maximum number of applicants is matched to their rank one posts and subject
to this condition, the maximum number of applicants is matched to their rank
two posts, and so on. A rank-maximal matching can be computed in time, where denotes the number of applicants, the
number of edges and the maximum rank of an edge in an optimal solution.
A central authority matches applicants to posts. It does so using one of the
rank-maximal matchings. Since there may be more than one rank- maximal matching
of , we assume that the central authority chooses any one of them randomly.
Let be a manipulative applicant, who knows the preference lists of all
the other applicants and wants to falsify his preference list so that he has a
chance of getting better posts than if he were truthful. In the first problem
addressed in this paper the manipulative applicant wants to ensure that
he is never matched to any post worse than the most preferred among those of
rank greater than one and obtainable when he is truthful. In the second problem
the manipulator wants to construct such a preference list that the worst post
he can become matched to by the central authority is best possible or in other
words, wants to minimize the maximal rank of a post he can become matched
to
On maximal inequalities via comparison principle
Under certain conditions, we prove a new class of one-sided, weighted, maximal
inequalities for a standard Brownian motion. Our method of proof is mainly based on
a comparison principle for solutions of a system of nonlinear first-order differential
equations
Closure Theorem for Sequential-Design Processes
This chapter focuses on stochastic control and decision processes that occur in a variety of theoretical and applied contexts, such as statistical decision problems, stochastic dynamic programming problems, gambling processes, optimal stopping problems, stochastic adaptive control processes, and so on. It has long been recognized that these are all mathematically closely related. That being the case, all of these decision processes can be viewed as variations on a single theoretical formulation. The chapter presents some general conditions under which optimal policies are guaranteed to exist. The given theoretical formulation is flexible enough to include most variants of the types of processes. In statistical problems, the distribution of the observed variables depends on the true value of the parameter. The parameter space has no topological or other structure here; it is merely a set indexing the possible distributions. Hence, the formulation is not restricted to those problems known in the statistical literature as parametric problems. In nonstatistical contexts, the distribution does not depend on an unknown parameter. All such problems may be included in the formulation by the device of choosing the parameter space to consist of only one point, corresponding to the given distribution
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
Stochastic Games with Lim Sup Payoff
Consider a two-person zero-sum stochastic game with countable state space S, finite action sets A and B for players 1 and 2, respectively, and law of motion p. Let u be a bounded real-valued function defined on the state space S and assume that the payoff from 2 to 1 along a play (or infinit
Finding maxmin allocations in cooperative and competitive fair division
We consider upper and lower bounds for maxmin allocations of a completely
divisible good in both competitive and cooperative strategic contexts. We then
derive a subgradient algorithm to compute the exact value up to any fixed
degree of precision.Comment: 20 pages, 3 figures. This third version improves the overll
presentation; Optimization and Control (math.OC), Computer Science and Game
Theory (cs.GT), Probability (math.PR
Games with capacity manipulation: Incentives and Nash equilibria
Studying the interactions between preference and capacity manipulation in matching markets, we prove that acyclicity is a necessary and sufficient condition that guarantees the stability of a Nash equilibrium and the strategy-proofness of truthful capacity revelation under the hospital-optimal and intern-optimal stable rules. We then introduce generalized games of manipulation in which hospitals move first and state their capacities, and interns are subsequently assigned to hospitals using a sequential mechanism. In this setting, we first consider stable revelation mechanisms and introduce conditions guaranteeing the stability of the outcome. Next, we prove that every stable non-revelation mechanism leads to unstable allocations, unless restrictions on the preferences of the agents are introduced
Patterns in random walks and Brownian motion
We ask if it is possible to find some particular continuous paths of unit
length in linear Brownian motion. Beginning with a discrete version of the
problem, we derive the asymptotics of the expected waiting time for several
interesting patterns. These suggest corresponding results on the
existence/non-existence of continuous paths embedded in Brownian motion. With
further effort we are able to prove some of these existence and non-existence
results by various stochastic analysis arguments. A list of open problems is
presented.Comment: 31 pages, 4 figures. This paper is published at
http://link.springer.com/chapter/10.1007/978-3-319-18585-9_
Automating human thought processes for a UAV forced landing
This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is then combined with a nonlinear guidance and control logic, and simulated test results demonstrate the robustness of this approach to strong winds during a glided descent. The average path deviation errors incurred are comparable to or even better than that of manned, powered aircraft. Secondly, a study into suitable multi-criteria decision making approaches and the problems that confront the decision-maker is presented. From this study, it is believed that decision processes that utilize human expert knowledge and fuzzy logic reasoning are most suited to the problem at hand, and further investigations will be conducted to identify the particular technique/s to be implemented in simulations and field tests. The automated UAV forced landing approach presented in this paper is promising, and will allow the progression of this technology from the development and simulation stages through to a prototype syste
- …
