222 research outputs found

    Integrating communication skills into undergraduate science degrees: A practical and evidence-based approach

    Full text link
    The introduction of generic skills, such as communication, into undergraduate science degrees is becoming common in higher education and has met with mixed implementation success. This study designed, piloted, and evaluated a set of adaptable activities that scaffold the explicit teaching and learning of science communication with non-scientific audiences. These activities were implemented in undergraduate science classes from three disciplines at an Australian research-intensive university. A mixed-methods approach was used to evaluate learning gains by collecting data from: student surveys; semi-structured interviews with academic teaching staff; and student performance by marking of assessment tasks. Self-reported learning gains showed 95% of all students perceived improvements in their ability to do all communication skills and 94% perceived improvements in their confidence in communicating science as a result of the activities. Academic teaching staff reported improvements in students' communication skills and understanding of core science content, and indicated that the tasks were explicit, engaging, and sustainable for use in future years. Students successfully transferred their learning to their assignments, demonstrating on average, a 'good,' 'excellent,' or 'outstanding' standard for each of the science communication criteria. These activities provide a promising starting point for integrating employable communication skills into undergraduate science degrees

    On the behaviour of lung tissue under tension and compression

    Get PDF
    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min−1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response

    ProSAAS-Derived Peptides are Colocalized with Neuropeptide Y and Function as Neuropeptides in the Regulation of Food Intake

    Get PDF
    ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1–2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpefat/fat mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpefat/fat mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake

    The contribution of risk factors to socioeconomic inequalities in multimorbidity across the lifecourse: a longitudinal analysis of the Twenty-07 cohort

    Get PDF
    Background: Multimorbidity is a major challenge to health systems globally and disproportionately affects socioeconomically disadvantaged populations. We examined socioeconomic inequalities in developing multimorbidity across the lifecourse and investigated the contribution of five behaviour-related risk factors. Methods: The Twenty-07 study recruited participants aged approximately 15, 35, and 55 years in 1987 and followed them up over 20 years. The primary outcome was development of multimorbidity (2+ health conditions). The relationship between five different risk factors (smoking, alcohol consumption, diet, body mass index (BMI), physical activity) and the development of multimorbidity was assessed. Social patterning in the development of multimorbidity based on two measures of socioeconomic status (area-based deprivation and household income) was then determined, followed by investigation of potential mediation by the five risk factors. Multilevel logistic regression models and predictive margins were used for statistical analyses. Socioeconomic inequalities in multimorbidity were quantified using relative indices of inequality and attenuation assessed through addition of risk factors. Results: Multimorbidity prevalence increased markedly in all cohorts over the 20 years. Socioeconomic disadvantage was associated with increased risk of developing multimorbidity (most vs least deprived areas: odds ratio (OR) 1.46, 95% confidence interval (CI) 1.26–1.68), and the risk was at least as great when assessed by income (OR 1.53, 95% CI 1.25–1.87) or when defining multimorbidity as 3+ conditions. Smoking (current vs never OR 1.56, 1.36–1.78), diet (no fruit/vegetable consumption in previous week vs consumption every day OR 1.57, 95% CI 1.33–1.84), and BMI (morbidly obese vs healthy weight OR 1.88, 95% CI 1.42–2.49) were strong independent predictors of developing multimorbidity. A dose–response relationship was observed with number of risk factors and subsequent multimorbidity (3+ risk factors vs none OR 1.91, 95% CI 1.57–2.33). However, the five risk factors combined explained only 40.8% of socioeconomic inequalities in multimorbidity development. Conclusions: Preventive measures addressing known risk factors, particularly obesity and smoking, could reduce the future multimorbidity burden. However, major socioeconomic inequalities in the development of multimorbidity exist even after taking account of known risk factors. Tackling social determinants of health, including holistic health and social care, is necessary if the rising burden of multimorbidity in disadvantaged populations is to be redressed

    Molecular Characterization of the Mouse Superior Lateral Parabrachial Nucleus through Expression of the Transcription Factor Runx1

    Get PDF
    The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem.Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family.Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus

    The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis

    Get PDF
    VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis

    Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors

    Get PDF
    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes
    corecore