124 research outputs found

    The impact of televised tobacco control advertising content on campaign recall: evidence from the International Tobacco Control (ITC) United Kingdom Survey

    Get PDF
    BACKGROUND: Although there is some evidence to support an association between exposure to televised tobacco control campaigns and recall among youth, little research has been conducted among adults. In addition, no previous work has directly compared the impact of different types of emotive campaign content. The present study examined the impact of increased exposure to tobacco control advertising with different types of emotive content on rates and durations of self-reported recall. METHODS: Data on recall of televised campaigns from 1,968 adult smokers residing in England through four waves of the International Tobacco Control (ITC) United Kingdom Survey from 2005 to 2009 were merged with estimates of per capita exposure to government-run televised tobacco control advertising (measured in GRPs, or Gross Rating Points), which were categorised as either “positive” or “negative” according to their emotional content. RESULTS: Increased overall campaign exposure was found to significantly increase probability of recall. For every additional 1,000 GRPs of per capita exposure to negative emotive campaigns in the six months prior to survey, there was a 41% increase in likelihood of recall (OR = 1.41, 95% CI: 1.24–1.61), while positive campaigns had no significant effect. Increased exposure to negative campaigns in both the 1–3 months and 4–6 month periods before survey was positively associated with recall. CONCLUSIONS: Increased per capita exposure to negative emotive campaigns had a greater effect on campaign recall than positive campaigns, and was positively associated with increased recall even when the exposure had occurred more than three months previously

    Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf

    Get PDF
    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves1,2 causing grounded glaciers to accelerate3 and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line4, which in the recent past has led to the disintegration of the most northerly ice shelves5,6. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwaterinduced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing7

    Conversational Interfaces for Explainable AI: A Human-Centered Approach

    Get PDF
    One major goal of Explainable Artificial Intelligence (XAI), in order to enhance trust in technology, is to enable the user to enquire information and explanation about its functionality directly from an intelligent agent. We propose conversational interfaces (CI) to be the perfect setting, since they are intuitive for humans and computationally processible. While there are many approaches addressing technical issues of this human-agent communication problem, the user perspective appears to be widely neglected. With the purpose of better requirement understanding and identification of implicit expectations from a human-centered view, a Wizard of Oz experiment was conducted, where participants tried to elicit basic information from a pretended artificial agent (What are your capabilities?). The hypothesis that users pursue fundamentally different strategies could be verified with the help of Conversation Analysis. Results illustrate the vast variety in human communication and disclose both requirements of users and obstacles in the implementation of protocols for interacting agents. Finally, we infer essential indications for the implementation of such a CI

    Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    Get PDF
    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model

    A life course approach to injury prevention: a "lens and telescope" conceptual model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although life course epidemiology is increasingly employed to conceptualize the determinants of health, the implications of this approach for strategies to reduce the burden of injuries have received little recognition to date.</p> <p>Methods</p> <p>The authors reviewed core injury concepts and the principles of the life course approach. Based on this understanding, a conceptual model was developed, to provide a holistic view of the mechanisms that underlie the accumulation of injury risk and their consequences over the life course.</p> <p>Results</p> <p>A "lens and telescope" model is proposed that particularly draws on (a) the extended temporal dimension inherent in the life course approach, with links between exposures and outcomes that span many years, or even generations, and (b) an ecological perspective, according to which the contexts in which individuals live are critical, as are changes in those contexts over time.</p> <p>Conclusions</p> <p>By explicitly examining longer-term, intergenerational and ecological perspectives, life course concepts can inform and strengthen traditional approaches to injury prevention and control that have a strong focus on proximal factors. The model proposed also serves as a tool to identify intervention strategies that have co-benefits for other areas of health.</p

    Metabolic Programming during Lactation Stimulates Renal Na+ Transport in the Adult Offspring Due to an Early Impact on Local Angiotensin II Pathways

    Get PDF
    BACKGROUND: Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na(+)-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman's capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na(+)+K(+))ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K(+). Programming doubled the ouabain-insensitive Na(+)-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT(1) and decreased the expression of AT(2) receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT(2) receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na(+) excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days. CONCLUSIONS/SIGNIFICANCE: Maternal protein restriction during lactation results in alterations in GFR, renal Na(+) handling and in components of the Ang II-linked regulatory pathway of renal Na(+) reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension in adulthood

    Widespread movement of meltwater onto and across Antarctic ice shelves

    Get PDF
    Surface meltwater drains across ice sheets, forming melt ponds that can trigger ice-shelf collapse, acceleration of grounded ice flow and increased sea-level rise. Numerical models of the Antarctic Ice Sheet that incorporate meltwater’s impact on ice shelves, but ignore the movement of water across the ice surface, predict a metre of global sea-level rise this century5 in response to atmospheric warming. To understand the impact of water moving across the ice surface a broad quantification of surface meltwater and its drainage is needed. Yet, despite extensive research in Greenland and observations of individual drainage systems in Antarctica, we have little understanding of Antarctic-wide surface hydrology or how it will evolve. Here we show widespread drainage of meltwater across the surface of the ice sheet through surface streams and ponds (hereafter ‘surface drainage’) as far south as 85° S and as high as 1,300 metres above sea level. Our findings are based on satellite imagery from 1973 onwards and aerial photography from 1947 onwards. Surface drainage has persisted for decades, transporting water up to 120 kilometres from grounded ice onto and across ice shelves, feeding vast melt ponds up to 80 kilometres long. Large-scale surface drainage could deliver water to areas of ice shelves vulnerable to collapse, as melt rates increase this century. While Antarctic surface melt ponds are relatively well documented on some ice shelves, we have discovered that ponds often form part of widespread, large-scale surface drainage systems. In a warming climate, enhanced surface drainage could accelerate future ice-mass loss from Antarctic, potentially via positive feedbacks between the extent of exposed rock, melting and thinning of the ice sheet

    Early influences on cardiovascular and renal development

    Get PDF
    The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh
    corecore