2,393 research outputs found

    Perioperative care of the geriatric patient for noncardiac surgery

    Get PDF
    Adults age 65 and over are the fastest growing segment of the population in the United States and around the world. As the size of this population expands, the number of older adults referred for surgical procedures will continue to increase. Due to the physiologic changes of aging and the increased frequency of comorbidities, older adults are at increased risk for adverse outcomes, and perioperative care is inherently more complex than in younger individuals. In this review, we discuss the physiologic changes of aging relevant to the surgical patient, comprehensive preoperative assessment, and postoperative management of common complications in older adults in order to promote optimal clinical outcomes both perioperatively and long-term

    Symmetries of Snyder--de Sitter space and relativistic particle dynamics

    Full text link
    We study the deformed conformal-Poincare symmetries consistent with the Snyder--de Sitter space. A relativistic particle model invariant under these deformed symmetries is given. This model is used to provide a gauge independent derivation of the Snyder--de Sitter algebra. Our results are valid in the leading order in the parameters appearing in the model.Comment: 12 pages, LaTeX, version appearing in JHEP, minor changes to match published versio

    Reconstitution of huPBL-NSG Mice with Donor-Matched Dendritic Cells Enables Antigen-Specific T-cell Activation

    Get PDF
    Humanized mouse models provide a unique opportunity to study human immune cells in vivo, but traditional models have been limited to the evaluation of non-specific T-cell interactions due to the absence of antigen-presenting cells. In this study, immunodeficient NOD/SCID/IL2r-γnull (NSG) mice were engrafted with human peripheral blood lymphocytes alone or in combination with donor-matched monocyte-derived dendritic cells (DC) to determine whether antigen-specific T-cell activation could be reconstituted. Over a period of 3 weeks, transferred peripheral blood lymphocytes reconstituted the spleen and peripheral blood of recipient mice with predominantly human CD45-positive lymphocytes. Animals exhibited a relatively normal CD4/CD8 ratio (average 1.63:1) as well as reconstitution of CD3/CD56 (averaging 17.8%) and CD20 subsets (averaging 4.0%). Animals reconstituted with donor-matched CD11c+ DC also demonstrated a CD11c+ population within their spleen, representing 0.27% to 0.43% of the recovered human cells with concurrent expression of HLA-DR, CD40, and CD86. When immunized with adenovirus, either as free replication-incompetent vector (AdV) or as vector-transduced DC (DC/AdV), there was activation and expansion of AdV-specific T-cells, an increase in Th1 cytokines in serum, and skewing of T-cells toward an effector/memory phenotype. T-cells recovered from animals challenged with AdV in vivo proliferated and secreted a Th1-profile of cytokines in response to DC/AdV challenge in vitro. Our results suggest that engrafting NSG mice with a combination of lymphocytes and donor-matched DC can reconstitute antigen responsiveness and allow the in vivo assessment of human immune response to viruses, vaccines, and other immune challenges

    Imbibition in Disordered Media

    Full text link
    The physics of liquids in porous media gives rise to many interesting phenomena, including imbibition where a viscous fluid displaces a less viscous one. Here we discuss the theoretical and experimental progress made in recent years in this field. The emphasis is on an interfacial description, akin to the focus of a statistical physics approach. Coarse-grained equations of motion have been recently presented in the literature. These contain terms that take into account the pertinent features of imbibition: non-locality and the quenched noise that arises from the random environment, fluctuations of the fluid flow and capillary forces. The theoretical progress has highlighted the presence of intrinsic length-scales that invalidate scale invariance often assumed to be present in kinetic roughening processes such as that of a two-phase boundary in liquid penetration. Another important fact is that the macroscopic fluid flow, the kinetic roughening properties, and the effective noise in the problem are all coupled. Many possible deviations from simple scaling behaviour exist, and we outline the experimental evidence. Finally, prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe

    Oldest known pantherine skull and evolution of the tiger

    Get PDF
    The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells

    Flagellin-Induced Corneal Antimicrobial Peptide Production and Wound Repair Involve a Novel NF-κB–Independent and EGFR-Dependent Pathway

    Get PDF
    The bacterial protein flagellin plays a major role in stimulating mucosal surface innate immune response to bacterial infection and uniquely induces profound cytoprotection against pathogens, chemicals, and radiation. This study sought to determine signaling pathways responsible for the flagellin-induced inflammatory and cytoprotective effects on human corneal epithelial cells (HCECs).Flagellin purified from Pseudomonas aeruginosa (strain PAK) or live bacteria were used to challenge cultured HCECs. The activation of signaling pathways was assessed with Western blot, and the secretion of cytokine/chemokine and production of antimicrobial peptides (AMPs) were measured with ELISA and dot blot, respectively. Effects of flagellin on wound healing were assessed in cultured porcine corneas. L94A (a site mutation in TLR5 binding region) flagellin and PAK expressing L94A flagellin were unable to stimulate NF-kappaB activation, but were potent in eliciting EGFR signaling in a TGF-alpha-related pathway in HCECs. Concomitant with the lack of NF-kappaB activation, L94A flagellin was ineffective in inducing IL-6 and IL-8 production in HCECs. Surprisingly, the secretion of two inducible AMPs, LL-37 and hBD2, was not affected by L94A mutation. Similar to wild-type flagellin, L94A induced epithelial wound closure in cultured porcine cornea through maintaining EGFR-mediated signaling.Our data suggest that inflammatory response mediated by NF-kappaB can be uncoupled from epithelial innate defense machinery (i.e., AMP expression) and major epithelial proliferation/repair pathways mediated by EGFR, and that flagellin and its derivatives may have broad therapeutic applications in cytoprotection and in controlling infection in the cornea and other mucosal tissues

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans
    corecore