2,399 research outputs found

    Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes

    Get PDF
    A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal in ASPs and MBRs while discussing the inhibitory process requirements for other nutrients' removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement. © 2013 Elsevier Ltd

    Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery

    Get PDF
    © 2016 This study demonstrated a technique using forward osmosis (FO) to pre-concentrate the organic matter in raw wastewater, thereby transforming low strength wastewater into an anaerobically digestible solution. The chemical oxygen demand (COD) of raw wastewater was concentrated up to approximately eightfold at a water recovery of 90%. Thus, even low strength wastewater could be pre-concentrated by FO to the range suitable for biogas production via anaerobic treatment. Excessive salinity accumulation in pre-concentrated wastewater was successfully mitigated by adopting ionic organic draw solutes, namely, sodium acetate, and EDTA-2Na. These two draw solutes are also expected to benefit the digestibility of the pre-concentrated wastewater compared to the commonly used draw solute sodium chloride. Significant membrane fouling was observed when operating at 90% water recovery using raw wastewater. Nevertheless, membrane fouling was reversible and was effectively controlled by optimising the hydrodynamic conditions of the cross-flow FO system

    Symmetries of Snyder--de Sitter space and relativistic particle dynamics

    Full text link
    We study the deformed conformal-Poincare symmetries consistent with the Snyder--de Sitter space. A relativistic particle model invariant under these deformed symmetries is given. This model is used to provide a gauge independent derivation of the Snyder--de Sitter algebra. Our results are valid in the leading order in the parameters appearing in the model.Comment: 12 pages, LaTeX, version appearing in JHEP, minor changes to match published versio

    Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery

    Get PDF
    © 2018 This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical

    The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment

    Get PDF
    This study examined the relationship between molecular properties and the fate of trace organic contaminants (TrOCs) in the aqueous and solid phases during wastewater treatment by MBR. A set of 29 TrOCs was selected to represent pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides that occur ubiquitously in municipal wastewater. Both adsorption and biodegradation/transformation were found responsible for the removal of TrOCs by MBR treatment. A connection between biodegradation and molecular structure could be observed while adsorption was the dominant removal mechanism for the hydrophobic (log. D>. 3.2) compounds. Highly hydrophobic (log. D>. 3.2) but readily biodegradable compounds did not accumulate in sludge. In contrast, recalcitrant compounds with a moderate hydrophobicity, such as carbamazepine, accumulated significantly in the solid phase. The results provide a framework to predict the removal and fate of TrOCs by MBR treatment. © 2013

    Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system

    Get PDF
    © 2015. An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water

    Competitive adsorption of metals on cabbage waste from multi-metal solutions

    Full text link
    This study assessed the adsorption capacity of the agro-waste 'cabbage' as a biosorbent in single, binary, ternary and quaternary sorption systems with Cu(II), Pb(II), Zn(II) and Cd(II) ions. Dried and ground powder of cabbage waste (CW) was used for the sorption of metals ions. Carboxylic, hydroxyl, and amine groups in cabbage waste were found to be the key functional groups for metal sorption. The adsorption isotherms obtained could be well fitted to both the mono- and multi-metal models. In the competitive adsorption systems, cabbage waste adsorbed larger amount of Pb(II) than the other three metals. However, the presence of the competing ions suppressed the sorption of the target metal ions. Except the case of binary system of Cd(II)-Zn(II) and Cd(II)-Cu(II), there was a linear inverse dependency between the sorption capacities and number of different types of competitive metal ions. © 2013 Elsevier Ltd

    Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization

    Full text link
    © 2016 Anaerobic co-digestion (AcoD) is a pragmatic approach to simultaneously manage organic wastes and produce renewable energy. This review demonstrates the need for improving AcoD modelling capacities to simulate the complex physicochemical and biochemical processes. Compared to mono-digestion, AcoD is more susceptible to process instability, as it operates at a higher organic loading and significant variation in substrate composition. Data corroborated here reveal that it is essential to model the transient variation in pH and inhibitory intermediates (e.g. ammonia and organic acids) for AcoD optimization. Mechanistic models (based on the ADM1 framework) have become the norm for AcoD modelling. However, key features in current AcoD models, especially relationships between system performance and co-substrates’ properties, organic loading, and inhibition mechanisms, remain underdeveloped. It is also necessary to predict biogas quantity and composition as well as biosolids quality by considering the conversion and distribution of sulfur, phosphorus, and nitrogen during AcoD

    Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass

    Full text link
    © 2019 Elsevier Ltd This study investigated the production of biogas, volatile fatty acids (VFAs), and other soluble organic from lignocellulosic biomass by two microbial communities (i.e. rumen fluid and anaerobic sludge). Four types of abundant lignocellulosic biomass (i.e. wheat straw, oaten hay, lurence hay and corn silage)found in Australia were used. The results show that rumen microbes produced four-time higher VFAs level than that of anaerobic sludge reactors, indicating the possible application of rumen microorganism for VFAs generation from lignocellulosic biomass. VFA production in the rumen fluid reactors was probably due to the presence of specific hydrolytic and acidogenic bacteria (e.g. Fibrobacter and Prevotella). VFA production corroborated from the observation of pH drop in the rumen fluid reactors indicated hydrolytic and acidogenic inhibition, suggesting the continuous extraction of VFAs from the reactor. Anaerobic sludge reactors on the other hand, produced more biogas than that of rumen fluid reactors. This observation was consistent with the abundance of methanogens in anaerobic sludge inoculum (3.98% of total microbes)compared to rumen fluid (0.11%). VFA production from lignocellulosic biomass is the building block chemical for bioplastic, biohydrogen and biofuel. The results from this study provide important foundation for the development of engineered systems to generate VFAs from lignocellulosic biomass
    corecore