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Abstract: This study demonstrated a technique using forward osmosis (FO) to pre-17 

concentrate the organic matter in raw wastewater, thereby transforming low strength 18 

wastewater into an anaerobically digestible solution. The chemical oxygen demand (COD) of 19 

raw wastewater was concentrated up to approximately eightfold at a water recovery of 90%. 20 

Thus, even low strength wastewater could be pre-concentrated using FO to the range suitable 21 

for biogas production via anaerobic treatment. Excessive salinity accumulation in pre-22 

concentrated wastewater was successfully mitigated by adopting ionic organic draw solutes, 23 

namely, sodium acetate and EDTA-2Na. These two draw solutes are also expected to benefit 24 

the digestibility of the pre-concentrated wastewater compared to sodium chloride. Significant 25 

membrane fouling was observed when operating at 90% water recovery using raw 26 

wastewater. Nevertheless, membrane fouling was reversible and was effectively controlled by 27 

optimising the hydrodynamic conditions of the cross-flow FO system. 28 

Keywords: forward osmosis (FO); wastewater; pre-concentration; ionic organic draw 29 

solution; anaerobic digestion; membrane fouling. 30 

31 
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1. Introduction 32 

The shift from aerobic to anaerobic biological treatment processes is a necessary step to 33 

achieve energy efficient wastewater treatment and to facilitate resource recovery practices 34 

(Frijns et al., 2013; Verstraete et al., 2009; Wei et al., 2014). Anaerobic treatment has two 35 

major advantages over aerobic treatment, including energy recovery via methane production 36 

and reduced energy input, since aeration is not required (Appels et al., 2008). Furthermore, 37 

anaerobic effluent represents a practical platform for nutrient recovery (Ansari et al., 2016; 38 

Xie et al., 2014b).  39 

In general, municipal wastewater is not suitable for direct anaerobic treatment. Indeed, given 40 

the low organic matter content of municipal wastewater (indicated by a chemical oxygen 41 

demand (COD) of usually less than 500 mg/L), the thermal energy and physical footprint 42 

required for anaerobic treatment can be excessive. Importantly, anaerobic treatment requires 43 

a feed solution in excess of 1,000 mg COD/L to ensure system stability and process 44 

efficiency (Khanal, 2009). An innovative approach to overcome the challenges associated 45 

with the anaerobic treatment of municipal wastewater involves the initial pre-concentration of 46 

organic matter prior to feeding the digester. 47 

The net energy recovery of anaerobic systems is theoretically proportional to the COD of the 48 

feed solution. Thus, pre-concentrating the organic matter in wastewater can significantly 49 

benefit the economics of anaerobic treatment processes. An ideal pre-concentration process 50 

would essentially separate water and non-aqueous components, to produce high quality water 51 

for reuse and a concentrate stream suitable for anaerobic treatment. Previously suggested 52 

methods include dynamic sand filtration, dissolved air flotation, and bio-flocculation (Frijns 53 

et al., 2013; Verstraete et al., 2009). However, these systems have limited organics retention 54 

capability and effluent from these processes still requires membrane filtration to produce 55 

water suitable for reuse. High rejection membrane processes such as nanofiltration (NF) and 56 

reverse osmosis (RO) can pre-concentrate the organic content of wastewater. Yet, they are 57 

not suitable for direct wastewater treatment and require extensive pre-treatment to control 58 

membrane fouling. Thus, the application of advanced separation technologies which can 59 

handle complex wastewater and achieve low energy treatment will be pivotal to developing 60 

sustainable wastewater treatment practices.  61 
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Forward osmosis (FO) is a membrane process with significant advantages when applied to 62 

wastewater treatment for fresh water production and resource recovery (Lutchmiah et al., 63 

2014b; Xie et al., 2016). Unlike pressure driven membrane processes, the driving force of 64 

water permeation for FO is the osmotic pressure gradient between the feed solution 65 

(wastewater) and the draw solution (e.g. NaCl) (Cath et al., 2006). FO can directly pre-66 

concentrate wastewater without significant external energy input (Alturki et al., 2013; Cath et 67 

al., 2006; Lutchmiah et al., 2014b). Furthermore, the nature of the driving force means that 68 

the process has a low fouling propensity and fouling can be highly reversible (Mi and 69 

Elimelech, 2010; Mi and Elimelech, 2013; She et al., 2016). Therefore, treatment of complex 70 

matrices such as wastewater by FO is feasible and key constituents including organic matter 71 

and nutrients can be retained in the concentrate. Fresh water can also be recovered from the 72 

draw solution by applying an additional desalination process such as NF (Nguyen et al., 73 

2015), RO (Holloway et al., 2014; Luo et al., 2016), or membrane distillation (MD) (Nguyen 74 

et al., 2016; Xie et al., 2013). In particular, as a thermally driven desalination processes, MD 75 

presents a unique opportunity, as the required thermal energy could be supplied by solar 76 

thermal energy or from biogas co-generation produced from the subsequent anaerobic 77 

digestion of pre-concentrated wastewater (Duong et al., 2016). 78 

FO is recognised as a promising approach to pre-concentrate wastewater prior to anaerobic 79 

treatment (Ansari et al., 2015; Lutchmiah et al., 2014a; Wei et al., 2014; Zhang et al., 2014), 80 

however this approach is yet to be fully explored. Recent studies have focused almost 81 

exclusively on the integration of FO and anaerobic treatment to form an anaerobic osmotic 82 

membrane bioreactor (An-OMBRs) (Chen et al., 2014; Gu et al., 2015; Yin Tang and Ng, 83 

2014) or to filter anaerobic effluent (Ding et al., 2014; Ding et al., 2016; Onoda et al., 2015). 84 

To date, very few studies have investigated the use of FO for direct treatment of municipal 85 

wastewater (Wang et al., 2016; Xie et al., 2013; Zhang et al., 2014). The FO wastewater pre-86 

concentration concept allows for the simultaneous extraction of clean water for beneficial 87 

reuse while pre-concentrating wastewater to a higher strength suitable for anaerobic 88 

treatment. In this approach, a higher degree of control and accessibility exists for the FO 89 

component as it is not confined within a bioreactor, as is the case for An-OMBRs. In their 90 

recent work, Zhang et al. (2014) demonstrated the FO wastewater pre-concentration process, 91 

however due to the limitations of their experimental set-up, could only demonstrate a COD 92 

concentration factor of approximately three. Wang et al. (2016) presented the treatment 93 

performance of a spiral wound FO module to concentrate wastewater. Nevertheless, issues of 94 
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salinity accumulation and anaerobic treatment integration were not addressed by Wang et al. 95 

(2016). 96 

Although there is growing interest in the application of FO for wastewater pre-concentration 97 

and subsequent energy/resource recovery, the assessment of key performance factors has not 98 

been systematically investigated to date. Several challenges must be addressed for the 99 

implementation of the proposed FO wastewater pre-concentration process. Firstly, salinity 100 

accumulation is a major problem for high retention membrane systems such as FO, and 101 

particularly when combined with a sensitive biological process (Lay et al., 2010; Luo et al., 102 

2014; Nawaz et al., 2013). Secondly, membrane fouling remains a prominent challenge for 103 

the sustained wastewater filtration of such complex wastewater solutions (Lutchmiah et al., 104 

2011; Valladares Linares et al., 2013; Xie et al., 2013; Zhang et al., 2014). 105 

This study aims to elucidate the key factors governing FO membrane performance during 106 

wastewater pre-concentration. The effectiveness of FO at pre-concentrating wastewater was 107 

examined by evaluating the ability of the FO membrane to retain COD at different water 108 

recoveries. Next, we evaluated the use of ionic organic draw solutes to mitigate salinity build-109 

up. The effect of the selected draw solution on the produced clean water flux, COD, and pH 110 

of the concentrated wastewater was also investigated. Lastly, the extent of membrane fouling 111 

was assessed and hydrodynamic conditions were optimised. Both batch and continuous flow 112 

experiments were conducted to observe FO membrane fouling behaviour with real 113 

wastewater under intense pre-concentration conditions. Overall, this study proposes the 114 

importance of draw solution selection and optimised hydrodynamic conditions for the 115 

application of FO for wastewater pre-concentration. 116 

2. Materials and Methods 117 

2.1 Materials and chemicals 118 

Cellulose triacetate (CTA) membrane with a non-woven support was used in this study and 119 

was acquired from Hydration Technologies Innovation (Albany, Oregon, USA). The overall 120 

thickness of this non-woven CTA membrane is 144 µm. The average pore size is expected to 121 

be similar to that of a CTA membrane with embedded support which has been reported to be 122 

0.37 nm by Xie et al. (2014a). Experiments were conducted with analytical grade draw 123 

solutes, at a constant osmotic pressure of 60 bar. The concentration of each draw solution at 124 

this pressure was calculated using OLI Stream Analyzer (OLI Systems, Inc., Morris Plains, 125 
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New Jersey, USA). Sodium chloride, sodium acetate, and EDTA-2Na were used as draw 126 

solutions and the concentrations corresponding to 60 bar osmotic pressure were 1.27, 1.49, 127 

and 0.61 M, respectively. 128 

Primary effluent (i.e. wastewater after primary sedimentation) was obtained from 129 

Wollongong Wastewater Treatment Plant (Wollongong, Australia). All batch experiments 130 

were conducted using both low and moderate strength wastewater, to represent the variability 131 

of municipal wastewater influent quality. Moderate strength wastewater was obtained during 132 

a dry weather period. Low strength wastewater was obtained immediately after a wet weather 133 

period.   134 

2.2 Forward osmosis system 135 

A lab-scale, cross-flow FO membrane system was used. The membrane cell had two 136 

symmetric flow channels both with length, width, and height of 250, 50, and 2 mm, 137 

respectively, resulting in an effective membrane area of 125 cm2. The feed and draw 138 

solutions were continuously circulated through each flow channel by two variable speed gear 139 

pumps (Micropump, Vancouver, Washington, USA). The flow rate was regulated by two 140 

rotameters and was adjusted to achieve the desired cross-flow velocity. The majority of 141 

experiments were operated with 1 L/min (corresponding to a cross-flow velocity of 16.7 142 

cm/s). A spacer was placed on the draw solution side of the membrane to improve mixing. 143 

The draw solution reservoir was positioned on a digital balance (Mettler-Toledo Inc., 144 

Hightstown, New Jersey, USA) and weight changes were recorded to calculate permeate 145 

water flux. A reservoir containing a highly concentrated stock solution (5 M) was also placed 146 

on the digital balance and was automatically dosed into the draw solution to maintain a 147 

constant osmotic pressure during experiments. The conductivity of the draw solution was 148 

monitored using a conductivity probe (Cole-Parmer, Vernon Hills, Illinois, USA), and was 149 

connected to a controller and a peristaltic pump to automatically regulate the draw solution 150 

concentration (control accuracy of ±0.1 mS/cm). 151 

2.3 Experimental protocol 152 

All experiments were conducted in FO mode (i.e. active layer facing the feed solution). 153 

Analytical grade solutes were dissolved in DI water at concentrations corresponding to an 154 

osmotic pressure of 60 bar. Water flux was measured according to the standard procedure 155 
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previously described by (Cath et al., 2013). Water recovery was used to represent the FO 156 

water extraction rate and was calculated based on the ratio of the cumulative permeate 157 

volume and the initial feed solution volume. 158 

For batch experiments, the FO system was used to process primary effluent until a water 159 

recovery of 90% had been achieved. The initial volume of primary effluent (i.e. feed 160 

solution) was 2 L, and the solution was continuously filtered until 90% of the feed solution 161 

had permeated through the membrane (i.e. permeate volume of 1.8 L). Water flux was 162 

continuously monitored. The conductivity, pH, and temperature of each solution were also 163 

regularly measured. A 10 mL sample was withdrawn from the feed solution at specific time 164 

intervals for COD analysis as a measure of the strength of the wastewater or concentrated 165 

solution. All batch experiments were conducted in duplicate. 166 

A continuous flow experiment was also conducted whereby 5 L of primary effluent was 167 

firstly processed to achieve 90% water recovery, leaving 0.5 L of pre-concentrated solution. 168 

At this point, the membrane was flushed with DI water to remove the fouling layer. The 169 

system was then continuously operated using a feeding and concentrate withdrawal regime 170 

(maintaining 90% water recovery). Two Masterflex peristaltic pumps (Cole-Parmer, Vernon 171 

Hills, Illinois, USA) were used to supply fresh primary effluent into the feed solution 172 

reservoir and to withdraw concentrate. The experiment was terminated approximately 90 173 

hours after membrane flushing, when the water flux had reduced to half of the initial water 174 

flux. Sodium chloride was used as the draw solution for all continuous flow experiments. 175 

Detailed reverse solute flux experiments were conducted to elucidate solute transport 176 

behaviours of the ionic organic draw solutes. The feed solution consisted of 3 L of DI water 177 

and the respective draw solution had a constant osmotic pressure of 60 bar. The conductivity, 178 

pH, and temperature of solutions were measured hourly. The reverse draw solute flux of each 179 

draw solution was measured by monitoring the changes of conductivity in the feed solution 180 

over time. A 20 mL sample was also withdrawn from the DI water feed solution reservoir for 181 

subsequent analysis of sodium and total organic carbon (TOC) to determine the reverse solute 182 

flux of sodium, and acetate and EDTA, respectively. 183 

2.4 Analytical methods 184 

Key water quality parameters of the primary effluent were measured according to standard 185 

methods. COD was measured using a Hach DRB200 COD Reactor and Hach DR3900 186 
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spectrophotometer (program number 435 COD HR) following the US-EPA Standard Method 187 

5220. Adequate dilutions and adjustments were made to minimise chloride interference 188 

during sample measurements. A Shimadzu analyser (TOC-VCSH) was used to determine TOC 189 

concentration. An inductively coupled plasma – optical emission spectroscopy (ICP-OES) 190 

system (ICP-OES 710, Agilent, Australia) was used to determine the sodium ion 191 

concentration in the samples. Temperature, pH, and electrical conductivity were measured 192 

using an Orion 4-Star pH/conductivity meter (Thermo Scientific, Waltham, MA). 193 

3. Results and discussion 194 

3.1 FO pre-concentration of organic matter in wastewater 195 

Low strength wastewater can be pre-concentrated by FO up to the range suitable for 196 

anaerobic digestion (i.e. approximately 1,000 mg COD/L). In this study, both low strength 197 

(137±8 mg COD/L), and moderate strength wastewater (356±13 mg COD/L) were pre-198 

concentrated until 90% water recovery was achieved (Figure 1A). The FO process 199 

predominantly extracted clean water, therefore enriching the concentration of organic matter 200 

in the feed solution. Results show that the FO process consistently pre-concentrated COD up 201 

to approximately eightfold, independent of the initial wastewater COD. The low and 202 

moderate strength wastewater COD concentrations were increased up to 982±61 and 203 

2,893±70 mg/L, respectively. These results demonstrate the suitability of FO for pre-204 

concentrating wastewater, and its robustness for treating wastewater with variable influent 205 

quality. Furthermore, pre-concentrating wastewater with FO produces a reduced solution 206 

volume (i.e. ten times reduction at 90% water recovery) that is rich in organics and is 207 

arguably more amenable to anaerobic digestion compared to directly digesting raw 208 

wastewater.  209 

The concentration of COD in wastewater increased proportionally with the FO system water 210 

recovery (Figure 1B). The FO membrane effectively retained a large proportion of organic 211 

matter in the feed solution, shown by the comparability of the experimental COD 212 

concentration with the calculated mass balance (i.e. assuming 100% COD retention in the 213 

feed solution). The experimental results were only slightly lower than values obtained from 214 

mass balance calculation and this observation can possibly be explained by the accumulation 215 

of solid organics within the membrane cell. In other words, a portion of the bulk pre-216 

concentrated wastewater COD gradually formed a cake layer on the membrane surface. 217 
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Therefore, the measured feed solution COD concentration was lower than expected, 218 

particularly at high water recoveries where solids content was high. To a lesser degree, the 219 

observed COD pre-concentration behaviour may also relate to the incomplete rejection of 220 

COD by the FO membrane (i.e. 99% rejection) (Valladares Linares et al., 2013). 221 

Theoretically, the COD concentration factor could be further maximised by increasing water 222 

recovery, or when higher strength wastewater is used as the feed solution (i.e. >500 mg 223 

COD/L), yet this would further exacerbate the issues of salinity accumulation (Section 3.2.1) 224 

and membrane fouling (Section 3.3). The eightfold concentration of COD achieved in this 225 

study is substantially higher than previous studies (i.e. three-fold COD concentration) (Zhang 226 

et al., 2014) and is attributed to the longer process filtration time and potentially the lower 227 

initial COD of the wastewater. 228 

[FIGURE 1] 229 

The enhanced organic content of FO concentrated wastewater can enable this solution to be 230 

fed into an anaerobic digester, and is arguably more effective when compared to direct 231 

anaerobic digestion of dilute wastewater. The net energy recovery from an anaerobic digester 232 

is theoretically proportional to the feed COD concentration, and therefore the FO system 233 

water recovery (Wei et al., 2014). Thus, the increased COD concentration of FO pre-234 

concentrated wastewater would increase energy recovery per unit volume of digestate. 235 

Furthermore, since 90% of the initial water content has been extracted by the FO process for 236 

further treatment, the volume of feed that requires heating to optimum mesophilic conditions 237 

(i.e. 35 °C) during anaerobic treatment is lowered ten-fold (when compared with raw 238 

wastewater). In addition, when the FO process is combined with other desalination processes, 239 

high quality water can be reclaimed for reuse (Chekli et al., 2016). Overall, FO presents a 240 

direct and robust approach to wastewater treatment, by focussing on pre-concentrating 241 

organic matter to facilitate subsequent anaerobic digestion for energy recovery. 242 

3.2 Ionic organic draw solutes for wastewater pre-concentration 243 

3.2.1 Salinity accumulation 244 

Salinity accumulation is a major hindrance for high retention membrane systems such as FO, 245 

particularly when coupled with a biological process (Luo et al., 2014). Intensive pre-246 

concentration of wastewater by FO leads to the accumulation of salinity in the feed solution 247 

via two mechanisms. Firstly, the natural salinity of wastewater is retained by the FO 248 
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membrane, and therefore the salt concentration increases proportionally to the system water 249 

recovery. Secondly, salt leaks from the draw solution into the feed solution (i.e. reverse draw 250 

solute flux) and can also significantly contribute to salinity accumulation (Cath et al., 2006). 251 

Salinity accumulation in FO systems can have detrimental effects on water flux, as the 252 

osmotic pressure of the feed solution is increased, thereby reducing the effective osmotic 253 

driving force. More importantly for this application, high salt content within the pre-254 

concentrated wastewater can have adverse effects on subsequent anaerobic treatment 255 

processes (Ansari et al., 2015). 256 

A promising approach to mitigate salinity build-up in FO pre-concentrated wastewater 257 

involves the use of ionic organic draw solutes. When sodium chloride was used as the draw 258 

solution, the conductivity of wastewater significantly increased as water recovery increased 259 

(Figure 2A). On the other hand, ionic organic draw solutes such as sodium acetate and 260 

EDTA-2Na presented a significantly lower conductivity compared to sodium chloride, 261 

demonstrating mitigation of salinity accumulation to a high degree. A similar result was 262 

expected by Bowden et al. (2012) when using organic ionic draw solutes in an aerobic 263 

osmotic membrane bioreactor. Because each experiment pre-concentrated wastewater to 90% 264 

water recovery, the main contributor to the variance in salinity was the reverse draw solute 265 

flux. As shown in Figure 2B, the extent of salt accumulation was inversely related to the 266 

magnitude of reverse solute flux selectivity (RSFS) for each draw solution. Both sodium 267 

acetate and EDTA-2Na exhibited a larger RSFS compared to sodium chloride, indicating that 268 

a smaller amount of solute diffused through the membrane for a constant permeate volume. 269 

Thus, adopting ionic organic draw solutions could achieve a pre-concentrated solution with a 270 

lower salinity, without compromising the achievable organic content in pre-concentrated 271 

wastewater. 272 

[FIGURE 2] 273 

The lower reverse solute flux behavior of sodium acetate and EDTA-2Na can be explained by 274 

the mobility of the draw solute molecule. Both draw solutes have a lower diffusivity 275 

compared to sodium chloride, as acetate and EDTA ions are significantly larger than chloride 276 

(Ansari et al., 2015). Thus, solute diffusion from the draw solution to the feed solution is 277 

restricted. This has implications for the attainable water flux for each draw solution (Section 278 

3.2.3). Binary ion analysis for sodium acetate showed a similar performance to sodium 279 
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chloride, whereby both the cation and anion diffused into the feed solution at a similar rate 280 

(Figure 3A). In contrast, binary ion analysis for EDTA-2Na revealed the potential decoupling 281 

of sodium and EDTA diffusion rates (Figure 3B). In other words, sodium tended to diffuse 282 

through the FO membrane at a faster rate than EDTA. This is likely due to the large size and 283 

high negative charge of EDTA, minimising EDTA diffusion through the membrane (Hau et 284 

al., 2014). Nonetheless, despite the identified decoupling of the EDTA-2Na draw solute, 285 

compared to sodium chloride and sodium acetate, the reverse salt flux with respect to only 286 

sodium was still insignificant. The combination of EDTA with solutes other than sodium has 287 

also shown potential to minimise reverse solute flux and would greatly benefit the FO pre-288 

concentration process (Nguyen et al., 2015).  289 

 [FIGURE 3] 290 

3.2.2 COD content of pre-concentrated wastewater 291 

In addition to mitigating salinity build-up, ionic organic draw solutes enhance COD when 292 

pre-concentrating low strength wastewater. At 90% water recovery, both sodium acetate and 293 

EDTA-2Na displayed higher COD concentrations compared to sodium chloride (Figure 4A). 294 

This may be due to the reverse solute flux of the ionic organic draw solutes, enhancing the 295 

COD concentration of the low strength wastewater. Although reverse solute flux is generally 296 

viewed as a hindrance for the FO process, in the case of ionic organic draw solutes, the 297 

mechanism could be beneficial for subsequent anaerobic treatment. For example, unlike 298 

sodium chloride which inhibits methane production during anaerobic treatment, the presence 299 

of sodium acetate and EDTA-2Na in pre-concentrated wastewater can benefit methane 300 

production (Ansari et al., 2015). By adopting ionic organic draw solutes when treating low 301 

strength wastewater, opportunities exist to operate at a favourably lower water recovery, 302 

whilst attaining the desired COD range and allowable salinity level. On the other hand, for 303 

moderate strength wastewater, the contribution of reverse solute flux to COD concentration 304 

was negligible (Figure 4B). The higher initial COD of the wastewater may have masked the 305 

contribution by reverse solute flux, and was possibly the reason why all three draw solutes 306 

displayed similar COD concentration performance. 307 

[FIGURE 4] 308 
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3.2.3 Effect of draw solute on water flux decline 309 

During the batch wastewater pre-concentration experiments, the choice of draw solute did not 310 

significantly affect water flux decline even at high water recovery values (Figure 5). This 311 

suggests that both membrane fouling and salinity accumulation did not significantly 312 

contribute to water flux decline under these conditions (i.e. small processing volume and 90% 313 

water recovery cycle). As discussed in Section 3.3, continuous operation did result in more 314 

severe membrane fouling. For these batch experiments, the osmotic pressure of the pre-315 

concentrated wastewater was significantly lower than the draw solution throughout the 316 

experiment. Flux decline was likely caused by the sparse accumulation of foulants on the 317 

membrane surface, as the implemented hydrodynamic conditions (i.e. increased cross-flow 318 

velocity) prevented excessive build-up of foulant materials. 319 

[FIGURE 5] 320 

Although the draw solution did not affect water flux decline, the initial water flux was 321 

significantly governed by the draw solution. Sodium chloride and sodium acetate gave 322 

similar initial water fluxes (5.5 and 5.4 L/m2h, respectively) at the same osmotic pressure (i.e. 323 

60 bar), whilst the initial water flux of EDTA-2Na was significantly lower (3.3 L/m2h). 324 

EDTA-2Na exhibited the lowest water flux, owing to the negative effects of internal 325 

concentration polarisation (McCutcheon and Elimelech, 2006). This has limitations regarding 326 

the scale-up of FO systems using EDTA based draw solutions, since a large membrane area 327 

would be required. Nonetheless, since FO is an osmotically driven process, other operational 328 

costs would not be significantly impacted. 329 

3.2.4 Effect of draw solute on pre-concentrated wastewater pH 330 

For all three draw solutions, the wastewater pH gradually increased during the pre-331 

concentration process (Figure 6). This is a result of the net diffusion of hydrogen ions from 332 

the feed to the draw solution. Hydrogen ion diffusion occurs in order to maintain solution 333 

electroneutrality, as a result of reverse solute flux (Hancock and Cath, 2009; Xie et al., 334 

2014b). When EDTA-2Na was used, the wastewater pH tended to increase at a fractionally 335 

slower rate compared with the other two draw solutions, and may be due to the significantly 336 

lower reverse solute flux rate of EDTA-2Na. Additionally, despite the lower reverse solute 337 

flux of sodium acetate compared to sodium chloride, the basic nature of highly concentrated 338 
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sodium acetate solution may have contributed to the observed high wastewater pH. Results 339 

indicate that independent of the selected draw solution, FO pre-concentrated wastewater will 340 

have a high pH (approximately pH 8) and thus may need adjustment prior to feeding into an 341 

anaerobic reactor. 342 

[FIGURE 6] 343 

3.3 Membrane fouling 344 

Sustained wastewater pre-concentration inevitably leads to membrane fouling. As shown in 345 

Figure 7, when a cross-flow velocity of 9 cm/s was applied, severe membrane fouling was 346 

evident by a rapid water flux decline. Importantly, a water recovery of only 70% could be 347 

achieved as the water flux had reduced to below 1 L/m2h.  348 

We increased the cross flow velocity as a hydraulic fouling control method during the 349 

continuous flow experiment. The difference in water flux decline patterns between the two 350 

cross-flow velocities (i.e. 9 cm/s and 17 cm/s) was significant (Figure 7). When the cross-351 

flow velocity was approximately doubled, water flux decline was considerably lower, and the 352 

target water recovery of 90% could be achieved in one cycle. Increasing the cross-flow 353 

velocity provides additional shear force, which hinders the accumulation of foulants on the 354 

membrane surface (Boo et al., 2013). For the higher cross flow velocity, the water flux 355 

decline was minimal up to a water recovery of 70%. From this point onwards, water flux 356 

declined more rapidly, most likely due to the increased solids content of the pre-concentrated 357 

wastewater at high water recoveries. Despite the flux declining by approximately half at a 358 

water recovery of 90%, the increased cross-flow velocity was shown to effectively reduce the 359 

rate of water flux decline for the complex pre-concentrated wastewater solution. High cross-360 

flow velocity flushing regimes can be further optimised to lower the energy consumption of 361 

this membrane fouling control strategy. However, this aspect is beyond the scope of our 362 

current study. 363 

[FIGURE 7] 364 

3.4 Fouling reversibility and water flux sustainability 365 

Increasing the applied cross-flow velocity resulted in less flux decline during wastewater pre-366 

concentration. However, after one cycle, water flux still declined to approximately 50% of 367 

the initial value. After membrane flushing, the initial water flux was completely restored 368 
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(Figure 8), demonstrating the reversibility of FO membrane fouling. Furthermore, this water 369 

flux recoverability highlights the negligible contribution of feed water salinity increase to 370 

water flux decline. The FO process inherently inhibits fouling due to the nature of the 371 

osmotic driving force. The absence of hydraulic pressure promotes a loose and highly 372 

reversible fouling layer. In addition, FO generally operates at a low water flux and therefore a 373 

lower fouling rate (Shaffer et al., 2015). For these reasons, simple membrane flushing is a 374 

highly effective cleaning strategy. 375 

[FIGURE 8] 376 

Longer-term water flux behaviour was observed by continuously operating the FO system 377 

with the pre-concentrated wastewater solution (i.e. fixed 90% water recovery) after one pre-378 

concentration cycle. In other words, after 70 hours of operation, fresh primary effluent was 379 

fed into the FO feed solution and concentrate was withdrawn to maintain a constant 90% 380 

system water recovery. From 70 hours onwards, the water flux gradually declined due to the 381 

continuous exposure to the pre-concentrated wastewater. Interestingly, the rate of water flux 382 

decline gradually decreased and appeared to reach a steady state at approximately 150 hours. 383 

This may indicate that the fouling cake layer had reached a maximum thickness, due to the 384 

cross flow conditions. Nonetheless, membrane fouling remains a prominent hurdle for FO 385 

systems and further efforts are required to investigate the effectiveness of other fouling 386 

mitigation methods during wastewater pre-concentration. 387 

4. Conclusion 388 

Pre-concentration of wastewater using FO presents a feasible approach to maximise the 389 

content of organic matter and possibly improve the digestibility of wastewater. In this study, 390 

the FO system achieved a COD concentration factor of approximately eightfold for low and 391 

moderate strength wastewater, at a water recovery of 90%. Specifically, FO allows for the 392 

pre-concentration of wastewater to the COD range (i.e. >1,000 mg/L) suitable for biogas 393 

production via anaerobic treatment, even with low strength primary effluent obtained during 394 

wet weather. Furthermore, the importance of draw solution selection is emphasised, as ionic 395 

organic draw solutes benefited the pre-concentration process in two ways. Both sodium 396 

acetate and EDTA-2Na solutes mitigated excessive salinity build-up in the pre-concentrated 397 

wastewater due to their lower reverse solute fluxes. Additionally, the ionic organic draw 398 

solutes enhanced the COD of low strength pre-concentrated wastewater, and are expected to 399 
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benefit the solutions digestibility in terms of biogas production compared to sodium chloride. 400 

Significant membrane fouling was observed when operating at 90% water recovery using raw 401 

wastewater during the continuous flow experiment.  However, this was reversible and could 402 

be controlled by optimising the hydrodynamic conditions during the FO process. Further 403 

developments of this FO wastewater pre-concentration process are recommended, including 404 

sustainable membrane fouling mitigation strategies and techno-economic evaluation at pilot 405 

scale level.  406 
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Figure 1: (A) Initial and final (i.e. at water recovery of 90%) COD concentrations for low 533 

and moderate strength wastewater. Error bars represent the standard deviation of triplicate 534 

COD sample measurements. (B) Variation of experimental and calculated wastewater COD 535 

concentration factor during FO pre-concentration.  Error bars represent the standard deviation 536 

of triplicate COD sample measurements from duplicate experiments. The initial wastewater 537 

COD for low and moderate strength wastewater were 137±8 mg/L, and 356±13 mg/L, 538 

respectively. Mass balance assumes 100% COD retention in feed solution. Experimental 539 

conditions: Primary effluent feed solution (2 L); π = 60 bar, NaCl draw solution; cross-flow 540 

rates of both feed and draw solutions were 1 L/min (corresponding to a cross-flow velocity of 541 

16.7 cm/s). 542 
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Figure 2: (A) Variation of wastewater conductivity during wastewater pre-concentration for 545 

sodium chloride, sodium acetate, and EDTA-2Na. Experimental conditions: Primary effluent 546 

feed solution (2 L); π = 60 bar draw solution; cross-flow rates of both feed and draw solutions 547 

were 1 L/min (corresponding to a cross-flow velocity of 16.7 cm/s). The initial wastewater 548 

conductivity was 1.05±0.02 mS/cm. (B) Water flux, reverse solute flux, and RSFS of sodium 549 

chloride, sodium acetate, and EDTA-2Na. Experimental conditions: As above, with DI water 550 

feed solution (4 L). Error bars represent the standard deviation of measurements from 551 

duplicate experiments. 552 
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Figure 3: Ionic organic draw solution binary ion diffusion analysis with linear regressions. 554 

(A) Sodium acetate and (B) EDTA-2Na. Experimental conditions: As in Figure 2B. 555 
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Figure 4: Variation of COD concentration during wastewater pre-concentration for (A) low 559 

strength and (B) moderate strength wastewater. Experimental conditions: Primary effluent 560 

feed solution (2 L); π = 60 bar draw solution; cross-flow rates of both feed and draw solutions 561 

were 1 L/min (corresponding to a cross-flow velocity of 16.7 cm/s). Error bars represent the 562 

standard deviation of triplicate COD measurements. 563 
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Figure 5: Water flux decline during batch wastewater pre-concentration. Experimental 565 

conditions: Primary effluent feed solution (2 L); π = 60 bar draw solution; cross-flow rates of 566 

both feed and draw solutions were 1 L/min (corresponding to a cross-flow velocity of 16.7 567 

cm/s). 568 
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Figure 6: Variation of pre-concentrated wastewater pH during batch wastewater pre-570 

concentration experiments. Experimental conditions: Primary effluent feed solution (2 L); π = 571 

60 bar draw solution; cross-flow rates of both feed and draw solutions were 1 L/min 572 

(corresponding to a cross-flow velocity of 16.7 cm/s). Error bars represent the standard 573 

deviation of measurements from duplicate experiments. 574 
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 575 

Figure 7: Effect of applied cross flow velocity on water flux during the continuous flow 576 

experiment. Experimental conditions: Primary effluent feed solution (5 L); π = 60 bar, NaCl 577 

draw solution; cross-flow rates of both feed and draw solutions were adjusted to achieve 578 

desired cross-flow velocity. 579 

 580 

Figure 8: Variation of water flux during the continuous flow experiment for one pre-581 

concentration cycle and at a fixed 90% water recovery (i.e. Rec=90%). Experimental 582 

conditions: Primary effluent feed solution (5 L); π = 60 bar, NaCl draw solution; cross-flow 583 

rates of both feed and draw solutions were 1 L/min (corresponding to a cross-flow velocity of 584 

16.7 cm/s). 585 
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