9 research outputs found

    To de or not to de? multi-objective differential evolution revisited from a component-wise perspective

    No full text
    Differential evolution (DE) research for multi-objective optimization can be divided into proposals that either consider DE as a stand-alone algorithm, or see DE as an algorithmic component that can be coupled with other algorithm components from the general evolutionary multiobjective optimization (EMO) literature. Contributions of the latter type have shown that DE components can greatly improve the performance of existing algorithms such as NSGA-II, SPEA2, and IBEA. However, several experimental factors have been left aside from that type of algorithm design, compromising its generality. In this work, we revisit the research on the effectiveness of DE for multi-objective optimization, improving it in several ways. In particular, we conduct an iterative analysis on the algorithmic design space, considering DE and environmental selection components as factors. Results show a great level of interaction between algorithm components, indicating that their effectiveness depends on how they are combined. Some designs present state-of-theart performance, confirming the effectiveness of DE for multi-objective optimization.SCOPUS: cp.kinfo:eu-repo/semantics/publishe

    Comparing decomposition-based and automatically component-wise designed multi-objective evolutionary algorithms

    No full text
    A main focus of current research on evolutionary multiobjective optimization (EMO) is the study of the effectiveness of EMO algorithms for problems with many objectives. Among the several techniques that have led to the development of more effective algorithms, decomposition and component-wise design have presented particularly good results. But how do they compare? In this work, we conduct a systematic analysis that compares algorithms produced using the MOEA/D decomposition-based framework and the AutoMOEA component-wise design framework. In particular, we identify a version of MOEA/D that outperforms the best known MOEA/D algorithm for several scenarios and confirms the effectiveness of decomposition on problems with three objectives. However, when we consider problems with five objectives, we show that MOEA/D is unable to outperform SMS-EMOA, being often outperformed by it. Conversely, automatically designed AutoMOEAs display competitive performance on three-objective problems, and the best and most robust performance among all algorithms considered for problems with five objectives.SCOPUS: cp.kinfo:eu-repo/semantics/publishe

    Deconstructing multi-objective evolutionary algorithms: An iterative analysis on the permutation flow-shop problem

    No full text
    Many studies in the literature have applied multi-objective evolutionary algorithms (MOEAs) to multi-objective combinatorial optimization problems. Few of them analyze the actual contribution of the basic algorithmic components of MOEAs. These components include the underlying EA structure, the fitness and diversity operators, and their policy for maintaining the population. In this paper, we compare seven MOEAs from the literature on three bi-objective and one tri-objective variants of the permutation flowshop problem. The overall best and worst performing MOEAs are then used for an iterative analysis, where each of the main components of these algorithms is analyzed to determine their contribution to the algorithms' performance. Results confirm some previous knowledge on MOEAs, but also provide new insights. Concretely, some components only work well when simultaneously used. Furthermore, a new best-performing algorithm was discovered for one of the problem variants by replacing the diversity component of the best performing algorithm (NSGA-II) with the diversity component from PAES. © 2014 Springer International Publishing.SCOPUS: cp.kinfo:eu-repo/semantics/publishe

    On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization

    Get PDF
    Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss experimental results obtained on benchmark multiobjective optimization problems with different sampling techniques and numbers of objectives. The results show the effect of different ways of utilizing uncertainty information on the quality of solutions.peerReviewe

    Dynamic estimation and Grid partitioning approach for Multi-Objective Optimization Problems in medical cloud federations

    Get PDF
    International audienceData sharing is important in the medical domain. Sharing data allows large-scale analysis with many data sources to provide more accurate results (especially in the case of rare diseases with small local datasets). Cloud federations can leverage sharing medical data stored in different cloud platforms, such as Amazon, Microsoft, Google Cloud, etc. They also enable access to distributed data of patients. The pay-as-yougo model in cloud federations raises important issues of Multi-Objective Optimization Problems (MOOP) related to users’ preferences, such as response time, money, quality, etc. However, optimizing a query in a cloud federation is complex with increasing the variety, especially due to a wide range of communications and pricing models. The variety of virtual machines configuration also leverages the high complexity in generating the space of candidate solutions. Indeed, in such a context, it is difficult to provide accurate estimations and optimal solutions to make relevant decisions. The first challenge is how to estimate accurate parameter values for MOOPs without precise knowledge of the execution environment in a cloud federation consisting of different sites. To address the accurate estimation of parameter values problem, we present the Dynamic Regression Algorithm (DREAM), which can provide accurate estimations in a cloud federation with limited historical data. DREAM focuses on reducing the size of historical data while maintaining the estimation accuracy. The second challenge is how to find an approximate optimal solution in MOOPs using an efficient Multi-Objective Optimization algorithm. To address the problem of finding an approximate optimal solution, we present Non-dominated Sorting Genetic Algorithms based on Grid partitioning (NSGA-G) for MOOPs. The proposed algorithm is integrated into the Intelligent Resource Scheduler, a solution for heterogeneous databases, to solve MOQP in cloud federations. We validate our algorithms with experiments on a decision support benchmark (TPC-H benchmark)
    corecore