4,240 research outputs found

    Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI

    Get PDF
    Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.published_or_final_versio

    "Centralized or Decentralized?": Concerns and Value Judgments of Stakeholders in the Non-Fungible Tokens (NFTs) Market

    Full text link
    Non-fungible tokens (NFTs) are decentralized digital tokens to represent the unique ownership of items. Recently, NFTs have been gaining popularity and at the same time bringing up issues, such as scams, racism, and sexism. Decentralization, a key attribute of NFT, contributes to some of the issues that are easier to regulate under centralized schemes, which are intentionally left out of the NFT marketplace. In this work, we delved into this centralization-decentralization dilemma in the NFT space through mixed quantitative and qualitative methods. Centralization-decentralization dilemma is the dilemma caused by the conflict between the slogan of decentralization and the interests of stakeholders. We first analyzed over 30,000 NFT-related tweets to obtain a high-level understanding of stakeholders' concerns in the NFT space. We then interviewed 15 NFT stakeholders (both creators and collectors) to obtain their in-depth insights into these concerns and potential solutions. Our findings identify concerning issues among users: financial scams, counterfeit NFTs, hacking, and unethical NFTs. We further reflected on the centralization-decentralization dilemma drawing upon the perspectives of the stakeholders in the interviews. Finally, we gave some inferences to solve the centralization-decentralization dilemma in the NFT market and thought about the future of NFT and decentralization.Comment: Accepted by CSCW 202

    Accurate Liability Estimation Improves Power in Ascertained Case Control Studies

    Full text link
    Linear mixed models (LMMs) have emerged as the method of choice for confounded genome-wide association studies. However, the performance of LMMs in non-randomly ascertained case-control studies deteriorates with increasing sample size. We propose a framework called LEAP (Liability Estimator As a Phenotype, https://github.com/omerwe/LEAP) that tests for association with estimated latent values corresponding to severity of phenotype, and demonstrate that this can lead to a substantial power increase
    corecore