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Abstract

Although pregnancy-induced hormonal changes have been shown to alter the brain at the
neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In
this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were
employed to investigate and document the effects of pregnancy on the structure and func-
tion of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at
three days before mating (baseline) and seventeen days after mating (G17). G17 is equiva-
lent to the early stage of the third trimester in humans. Seven age-matched nulliparous
female rats served as non-pregnant controls and were scanned at the same time-points.
For DTI, diffusivity was found to generally increase in the whole brain during pregnancy,
indicating structural changes at microscopic levels that facilitated water molecular move-
ment. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus
while fractional anisotropy in the dorsal dentate gyrus increased significantly during preg-
nancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased signifi-
cantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus
appeared to correlate with the bilateral functional connectivity increase in the hippocampus.
These findings revealed tissue structural modifications in the whole brain during pregnancy,
and that the hippocampus was structurally and functionally remodeled in a more marked
manner.

Introduction

Mammalian females, from rodents to primates, undergo fundamental behavioral changes dur-
ing pregnancy [1, 2]. Before pregnancy, female mammals are largely self-directed species that
satisfy their own needs for survival. During pregnancy, they become focused on the care and
well-being of their future offspring [1, 2]. Previous studies have reported that pregnancy-
induced behavioral changes are associated with the hippocampal functions. For example,
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improvements in learning and memory and enhancement in object recognition and placement
during pregnancy are related to functions of dorsal hippocampus whereas reduction in stress
responsiveness and anxiety is related to functions of the ventral hippocampus [1, 3-6]. These
pregnancy-induced behavioral changes may be associated with reproductive hormonal changes
[7]. Estrogen and progesterone are produced in the ovaries and placenta during pregnancy,
whereas prolactin and oxytocin are secreted by the hypothalamus and pituitary gland. These
hormonal changes have been previously shown to remodel the brain at the neuronal level [1].
For example, estrogen and progesterone can increase dendritic spine density and neuronal
excitability in the hippocampus, particularly the dentate gyrus [1, 8-11]. Prolactin can enhance
white matter regeneration in the brain, and may mediate neurogenesis in the forebrain [12-
14]. Oxytocin increases the firing of inhibitory hippocampal neurons, and may enhance hippo-
campal spike transmission [15, 16].

Despite the above findings, the effects of pregnancy on brain at the tissue level remain
largely unknown. In particular, it is unclear whether pregnancy remodels the hippocampus
structurally and functionally. This lack of such knowledge is partly due to limited non-invasive
tools available to assess different brain tissues longitudinally and quantitatively in the living
brains. Using small water molecules as a ubiquitous marker, MR diffusion tensor imaging
(DTI) provides an unprecedented and quantitative capability to probing tissue microstructures
noninvasively [17-19]. On the other hand, resting-state functional MRI (rstMRI) can map and
assess the functional connectivity between various brain regions based on the slow but tempo-
rally coherent blood-oxygenation-dependent MR signal fluctuations [20-23]. Together, these
two in vivo methods can probe and quantify structural and functional brain changes within a
large field of view across time. In this study, we applied DTI and rsfMRI to a rat pregnancy
model to study the structural and functional remodeling of the brain during pregnancy. The
rats were monitored at three days before mating (baseline) and seventeen days after mating
(G17), with G17 equivalent to the early stage of the third trimester (29" to 33" weeks of gesta-
tion) in humans. Age-matched non-pregnant controls were scanned at the same time-points.
The global tissue structural changes, together with the functional connectivity changes in the
hippocampus, were investigated.

Materials and Methods
Animal Preparation

This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
approved by the animal care and use committee of The University of Hong Kong (Permit
Number: 2041-09 and 3139-13). All MRI experimental procedures were performed under iso-
flurane anesthesia, and all efforts were made to minimize suffering. Twelve-week old female
Sprague-Dawley rats (250-280g, N = 22) were housed under a 12/12 hour light/dark cycle in a
temperature controlled room with ad libitum access to food and water [24-26]. Pregnant pri-
miparous rats (n = 15) were scanned longitudinally at three days before mating (baseline) and
seventeen days after mating (G17). Age-matched nulliparous female rats (n = 7) served as non-
pregnant controls and were examined at the same time-points as the pregnant rats [25].

MRI Protocols

All MRI experiments were performed using a 7T Bruker scanner (70/16 PharmaScan, Bruker
Biospin GmbH, Germany). After isoflurane induction at 3%, 1-2 drops of 2% lidocaine were
applied to the chords to provide local anesthesia before endotracheal intubation. The rats were
maintained at 1-1.5% isoflurane and mechanically ventilated at 54-56 cycles/min in room-
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temperature air using a ventilator (TOPO, Kent Scientific Corp., Torrington, CT). During
MR, the rats were placed on a plastic cradle with the head fixed with a tooth bar and plastic
screws in the ear canals. Body temperature was maintained using a water circulation system.
Continuous physiological monitoring was performed using an MRI-compatible system (SA
Instruments, Stony Brook, NY). Vital signs were maintained within normal physiological
ranges (rectal temperature 36.5-37.5°C, heart rate 350-420 beats/min, 54-56 breathes/min,
and oxygen saturation >95%) throughout the experiment [24, 26-28].

Scout T,-weighted images were obtained using a rapid acquisition with relaxation enhance-
ment (RARE) sequence to determine the transverse, coronal and sagittal planes of the brain.
Ten slices were positioned in the transverse orientation according to the rat brain atlas [29].
For DTI, diffusion-weighted images, together with 5 images without diffusion sensitization (b,
images), were acquired using a 4-shot spin-echo echo-planar-imaging sequence with TR/

TE = 3000/32ms, FOV = 32x32mm?, matrix = 128x128, slice thickness/gap = 1/0mm, 4 repeti-
tions, A/8 = 5/17ms, and 30 different diffusion directions at b-value = 1000 s/mm? [27, 28, 30].
For rsfMRI, a single shot gradient-echo echo-planar-imaging sequence was used with TR/

TE = 1000/18ms, FOV = 32x32mm?, matrix = 64x64, 10 slices with slice thickness/gap = 1/
Omm. A total of 420 volumes were acquired in each scanning trial, and 3 to 4 trials were
obtained for each animal [24, 26]. High-resolution RARE T,-weighted images were acquired in
the same geometric locations as DTT and rsfMRI as an anatomical reference with TR/

TE = 4200/36 ms and matrix = 256x256.

Data Analysis—DTI

Diftusion-weighted images were first registered to the respective b, image using AIRv5.25
(Roger Woods, UCLA, USA), and images with severe ghosting were excluded. Mean diffusivity
(MD)), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) maps were
calculated [27, 28, 31]. Using SPM8 (Wellcome Department of Imaging Neuroscience, Univer-
sity College, London, UK), the T,-weighted images from individual rats were co-registered to a
customized reference brain template (Figure A in S1 File) with a 3D rigid-body transformation
and the resulting transforming matrix was then applied to register the respective DTT index
maps.

The global changes of MD, FA, AD, and RD in the whole brain (WB), gray matter (GM),
and white matter (WM) were measured. The averaged MD, FA, AD, and RD maps were calcu-
lated, and were used to define the WB, GM and WM masks [32]. Specifically, GM and WM
masks were defined by voxels with MD < 1.0um>/ms and 0.05 < FA < 0.25, and
MD < 1.0pm2/ms and 0.32 < FA, respectively (Figure B in S1 File) [32]. Subsequently, histo-
grams were plotted for each rat in all DTT index maps and the expected value of each histogram
was calculated [32]. Results were compared between the baseline and G17 using two-way
ANOVA, followed by post-hoc Bonferroni’s test, to separate the effects caused by development
and pregnancy. Paired t-test was also applied to compare the measurements between the base-
line and G17 (Figure E in S1 File).

Regionally, changes of MD, FA, AD, and RD in the hippocampus were measured. To iden-
tify the specific subregions exhibiting DTI index value changes during pregnancy, voxel-based
analysis was applied to the pregnancy group by utilizing voxel-wise paired t-test for MD and
FA maps with SPM8 before and after pregnancy in the pregnant primiparous rats, followed by
multiple testing correction via false discovery rate [33]. Voxels with significant change
(p < 0.05) at a clustering level of 6 or more voxels were defined as hot voxels. Regions of inter-
est (ROIs) were defined in the pregnancy group according to the rat brain atlas and hot pixels.
They were found to center around the dorsal hippocampus and dorsal dentate gyrus. The
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average regional DTT index values were obtained by averaging the DTT index values in the
ROIs [33]. For the control group, the same ROIs were used. To offset the effects of global GM
changes on the hippocampus changes, the hippocampal MD, FA, AD, and RD measurements
were normalized with the respective global GM changes by:

Indexy,,
1 —Hndex% GM Chunge)

(1)

Index

normalized — (

Two-way ANOVA was applied to compare the measurements between the baseline and
G17, followed by post-hoc Bonferroni’s test. Paired t-test was also applied to compare the mea-
surements between the baseline and G17 (Figures F and G in S1 File).

Data Analysis—rsfMRI

For each rsfMRI session, all images were first corrected for slice timing differences with SPM8
and then realigned to the mean image of the series using 2D rigid-body transformation. The
first 20 image volumes of each session were discarded to eliminate possible non-equilibrium
effects. Voxel-wise linear detrending with least-squares estimation was performed temporally
to eliminate the drift caused by physiological noises and system instability. A temporal band-
pass filter (0.005-0.1Hz) was applied without spatial smoothing [23, 26, 34-36]. Trials with
excessive motion were excluded, resulting in an average of 3.32 trials per rat for subsequent
analysis (Table A in S1 File). Inter-animal co-registration was performed with SPM8 using sim-
ilar procedures as DTI image co-registration described above.

To determine whether the bilateral rsfMRI connectivity alters in the hippocampus during
pregnancy, both seed-based analysis (SBA) and independent component analysis (ICA) were
performed. For SBA, a 2x2-voxel region was chosen as the seed in the hippocampus [20, 23].
Regionally averaged time course from the voxels within the seed served as the reference time
course. Pearson’s correlation coefficients were calculated between the reference time course
and the time course of each voxel, and a 2x2-voxel region on the contralateral side of the seed
was defined as the ROI (Figure C1 in S1 File). Mean correlation coefficients were obtained
from averaging the correlation coefficients within the ROL The procedure was repeated with
the seed and ROI switched, and the two mean correlation coefficient values were averaged.

For ICA, co-registered rsfMRI data were analyzed with GIFT v2.0d Toolbox [37-39]. In
brief, 37 components were selected for the Infomax algorithm and group-level ICA was per-
formed on all rsfMRI data from the same time-point [26]. The group-level spatial ICA maps of
the resting-state networks were scaled to z-scores, and were visually inspected. The bilateral
hippocampal network was identified based on the spatial patterns with reference to known
anatomical and functional locations in the rat brain atlas [29, 34]. The ROI was defined in the
hippocampus based on the rat brain atlas (Figure C2 in S1 File), and the average z-score were
obtained by regional averaging in the ROIL Two-way ANOVA was applied to compare the SBA
and ICA measurements between baseline and G17, followed by post-hoc Bonferroni’s test.
Paired t-test was also applied to compare the measurements between the baseline and G17
(Figure H in S1 File).

Results
Brain Global Structural Changes during Pregnancy

Fig 1 shows the results of the histogram analyses of all DTI index measurements in both preg-
nancy and control groups. In general, all diffusivities including MD, AD and RD increased in
the WB, GM and WM during pregnancy. Fig 2 summarizes the DTT index changes in the WB,
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Fig 1. Histogram comparison of the tissue structural changes in the global brain between three days
before (baseline) and seventeen days after mating (G17) measured by DTI in the pregnancy (a) and
control (b) groups. Mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and radial
diffusivity (RD) were evaluated in the whole brain (WB), gray matter (GM) and white matter (WM). They were
generally observed to increase during pregnancy (a). In contrast, slight decreases were seen in the control

group (b).
doi:10.1371/journal.pone.0144328.g001

GM, and WM between the baseline and G17. In the pregnancy group, diffusivities were
observed to generally increase. Overall, the MD, AD and RD in the WB increased by

2.0+ 0.3%, 1.8 £ 0.3% and 1.8 + 0.3% (mean + standard error of mean, Bonferroni’s post-hoc
test, p<0.001), respectively. Similar results were observed in the GM, with percentage increase
of 1.7 £ 0.3%, 1.7 £ 0.3% and 1.8 + 0.3% (Bonferroni’s post-hoc test, p<0.001) in MD, AD and
RD, respectively. In the WM, the percentage increase in MD and AD were larger than those in
RD. They were 2.6 + 0.4% (Bonferroni’s post-hoc test, p<0.001), 3.1 + 0.5% (Bonferroni’s
post-hoc test, p<0.001) and 1.7 + 0.5% (Bonferroni’s post-hoc test, p<0.01), respectively. In
addition, FA was observed to have a tendency to increase, exhibiting 3.0 + 1.1% in the WM
(and 0.8 + 0.2% in the WB). In the control group, all diffusivities showed slight decreases (i.e.,
0.8 + 0.2% MD decrease in the WB) while FA exhibited 2.7 + 1.0% increase as expected due to
the brain developmental maturation over the 3-week observation period [27, 28]. All together,
these results demonstrated the general brain diffusivity increases during pregnancy, directly
revealing tissue structural changes in the global brain.

Structural Changes in the Hippocampus during Pregnancy

Fig 3A and 3B shows the results of voxel-based analysis of MD and FA changes, respectively, in
the hippocampus. Two ROIs were then defined according to the rat brain atlas and the results
of voxel-based analysis (Fig 3C). The first ROI covered the dorsal hippocampus (ROI-HP), and
the second one consisted of two mirrored squares covering the dorsal dentate gyrus (ROI-DG).
Fig 3D summarizes MD, FA, AD and RD changes in these two ROIs. The results were normal-
ized with global GM changes, and subsequently summarized in Fig 3E. Before normalization,
the MD, AD and RD in ROI-HP increased by 4.9 + 1.3%, 4.8 + 1.3% and 5.0 + 1.2% (Bonferro-
ni’s post-hoc test, p<0.01), respectively, during pregnancy but not in the controls, whereas FA
in ROI-DG increased by 9.5 + 2.0% (Bonferroni’s post-hoc test, p<0.01) during pregnancy but
not in the controls. With normalization, the increases of MD, AD and RD in ROI-HP were

3.2 + 1.2% (Bonferroni’s post-hoc test, p<0.05), 3.1 + 1.2% (Bonferroni’s post-hoc test,

p =0.056), and 3.3 + 1.2% (Bonferroni’s post-hoc test, p<0.05), respectively, during pregnancy,
whereas FA increase in ROI-DG remained significant and was 9.6 + 2.2% (Bonferroni’s post-
hoc test, p<0.01). These results indicated the presence of more pronounced tissue structural
remodeling in the dorsal hippocampus, including the dorsal dentate gyrus during pregnancy.

Functional Connectivity Changes in Bilateral Hippocampi during
Pregnancy

Fig 4A and 4B shows the results of SBA and ICA, respectively in the hippocampus. The mean
correlation coefficient maps and z-score maps demonstrate the presence of the bilateral hippo-
campal rsfMRI connectivity in both pregnancy and control groups at baseline and G17. More
importantly, both maps show that the rsfMRI connectivity in the hippocampus became stron-
ger during pregnancy. Quantitatively, the correlation coefficient obtained in SBA increased sig-
nificantly by 38.8 £ 6.2% (Bonferroni’s post-hoc test, p<0.001) in the hippocampus and the z-
score obtained in ICA increased significantly by 43.9 + 7.2% (Bonferroni’s post-hoc test,
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Fig 2. The comparison of the tissue structural changes in the global brain between the baseline and G17 in the pregnancy (top) and control
(bottom) groups. In the pregnancy group, MD, AD and RD increased globally, indicating tissue microstructural remodeling (that facilitated water molecular
diffusion) in the global brain. Two-way ANOVA was applied, followed by post-hoc Bonferroni’s test. *, ** and *** denote p<0.05, p<0.01 and p<0.001,
respectively. Error bars indicate the standard deviation.

doi:10.1371/journal.pone.0144328.9002

p<0.001) during pregnancy. Note that similar ICA analysis was also performed for the bilateral
primary and secondary somatosensory networks, revealing no significant connectivity strength
changes in both pregnancy and control groups between baseline and G17 (Figure D in S1 File).
These results indicated that the bilateral hippocampus became more functionally connected
during pregnancy.

Structural vs. Functional Changes in Hippocampal Tissues

The scatter plots in Fig 5 display the relationships between the FA changes in the dorsal dentate
gyrus (ROI-DG in Fig 3) and the bilateral rsfMRI connectivity changes in the hippocampus of
individual rats in both pregnancy and control groups. These DTT and rsfMRI changes were
found to correlate in the pregnancy group (R* = 0.406; p = 0.011) but not in the control group
(R*=0.34; p = 0.17). Presence of such MD and FA correlation in the pregnancy group sug-
gested a coupling between structural and functional changes in the hippocampus during
pregnancy.

Discussion
Structural Changes in the Global Brain

Diffusivity is sensitive to various cellular-level tissue microstructures that modulate the extent
and behavior of water molecular diffusion. The global diffusivity increases observed between
the baseline and G17 in this study (Figs 1 and 2) revealed that the brain tissue microstructure
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Fig 3. The results of the voxel-based analysis followed by multiple testing corrections via false discovery rate in MD (a) and FA (b) of the
pregnancy group. The hot voxels indicated significant increase during pregnancy, and the threshold applied was p = 0.05. With reference to (a), (b)
and the rat brain atlas, regions of interest (ROls) were defined (c) and employed for quantitative analysis. The ROI-HP covers the dorsal
hippocampus, and the ROI-DG covers the dorsal dentate gyrus (DG). (d) The summary of the local tissue structural changes between the baseline
and G17 in the ROI-DG and ROI-HP of both the pregnancy and control groups without any normalization. There was significant increase in FA in
the ROI-DG, and significant increase in MD, AD and RD in the ROI-HP during pregnancy, but not in the controls. After normalization with global GM
changes (e), MD, AD and RD changes in ROI-HP became smaller but remained increased, while the increase in FA in the ROI-DG was similar.
These results indicated the presence of more pronounced tissue structural remodeling in the dorsal hippocampus, including the dorsal dentate
gyrus during pregnancy. Two-way ANOVA was applied, followed by post-hoc Bonferroni’s test. * and ** denote p<0.05 and p<0.01 and, respectively.
Error bars indicate the standard deviation.

doi:10.1371/journal.pone.0144328.9003

became more diffusion-friendly or permeable to water molecular diffusion movements during
pregnancy. Thus they directly indicated the tissue structural changes in the global brain during
pregnancy. The mechanisms underlying such global tissue changes at microscopic levels as
probed by in vivo DTT can be multi-faceted and complex. One possibility is that such diffusivity
increase may be closely associated with the decrease of taurine concentration in the brain and/
or the increase of extracellular fluid. Taurine is an organic acid in the central nervous system
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Fig 4. (a) The mean correlation coefficient maps of rsfMRI obtained using seed based analysis (SBA) with seeds (crosses) in the right or left dorsal
hippocampus. (b) The mean z-score maps obtained using independent component analysis (ICA). The mean correlation coefficient maps and mean z-
score maps demonstrate the presence of the bilateral hippocampal rsfMRI connectivity in both pregnancy and control groups at baseline and G17. Both
types of connectivity maps show that the rsfMRI connectivity in the hippocampus became stronger during pregnancy. These results indicated that the
bilateral hippocampus became more functionally connected during pregnancy. The maps are overlaid on T2-weighted anatomical image. Two-way ANOVA
was applied followed by post-hoc Bonferroni’s test. *** denotes p<0.001. Error bars indicate the standard deviation.

doi:10.1371/journal.pone.0144328.9004
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Fig 5. The relationship between FA in dorsal dentate gyrus and functional connectivity in
hippocampus of individual rats from baseline to G17 in the pregnancy group (upper panel) and
control group (lower panel). These results indicated that DTI-based structural changes in the dorsal
dentate gyrus and the bilateral rsfMRI connectivity changes in the hippocampus during pregnancy were
correlated and might be coupled. In contrast, no such correlation was observed in the control group.

doi:10.1371/journal.pone.0144328.9005

that prevents neurons and glial cells from shrinking. Its concentration in the brain has been
found to decrease during pregnancy, which can cause neuron and glial cell shrinkage [25, 40-
43]. Consequently, extracellular space may increase during pregnancy. In fact, extracellular
fluid has been reported to increase in the brain during pregnancy [44], and the increase in
extracellular fluid has been shown to well correlate with the increase of tissue apparent diffu-
sion coefficient (ADC) or MD because more extracellular space presents lesser restriction of
water molecule diffusion [45-49]. All together, the cell shrinkage and increase of extracellular
space/fluid likely contributed to the global diffusivity increases during pregnancy observed in
the present study.
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Structural Changes in the Hippocampus

The increase of normalized MD in the dorsal hippocampus during pregnancy (Fig 3) indicated
that tissue structural changes in these regions were more pronounced than other GM struc-
tures. Such distinctive tissue structural changes may be relevant to the functions of the dorsal
hippocampus. For example, previous studies have implicated that the dorsal hippocampus is
involved in memory and spatial navigation [50], and pregnancy could result in improvements
in learning and memory [4], as well as enhancement in object recognition and placement [5].
Our previous MR spectroscopy study of the same rat pregnancy model revealed a pronounced
decrease in taurine concentration in the hippocampus during pregnancy while other brain
regions showed no detectable changes [25]. Given the key role of taurine in brain cell osmoreg-
ulation [40-42], this MR spectroscopy finding suggests that the effect of cell shrinkage may be
more prominent in the hippocampus than that in other brain regions. Thus hippocampus will
experience more extracellular space increase, leading to more MD increase in hippocampus
than in other GM regions.

The increase of FA in the dorsal dentate gyrus was observed during pregnancy, with or
without global GM normalization (Fig 3). Such structural changes may be associated with
potential behavioral changes during pregnancy that involve the DG. For example, it has been
demonstrated that the dorsal dentate gyrus mediates spatial pattern separation [51], which is
essential for spatial learning and memory, and object recognition and placement. These
behavioral functions have been shown to improve during pregnancy [4, 5]. However, the bio-
logical processes underlying such gray matter diffusion anisotropy increases are expected to
be complex. They remain largely unknown in the current DTT literature though several
recent studies have reported learning- or fear-induced hippocampal diffusivity changes and
FA increases [33, 52, 53]. Previous electrophysiology studies demonstrated an increase in
neuronal excitability in the DG during pregnancy, and the increase in excitability has been
shown to correlate with the increase in dendritic spine density [8, 54]. If dendritic spine den-
sity increase in hippocampus is assumed to be spatially random, hippocampal MD should be
expected to decrease due to more restricted diffusion environment. However, both dorsal
hippocampal MD and DG MD were observed to increase in the present study, which might
still reflect the competing outcome of the dendritic spine density increase effects vs. cell
shrinkage and extracellular space expansion effects. It might also be plausible that DG den-
dritic spine density increase occurs anisotropically, thus yielding local FA increase as
observed in the present study. Nevertheless, future biochemical studies are needed to eluci-
date the cellular and subcellular processes underlying the water diffusion alterations detected
by DTI in hippocampus.

Functional Connectivity Changes in Bilateral Hippocampi

rsfMRI connectivity measurements have been shown to correspond strongly with dendritic
spine distribution, electrophysiological properties and behavioral quantities [55-58]. The den-
dritic spine density has been found to increase during pregnancy in the hippocampus [1, 11].
Electrophysiology studies showed an increase in neuronal excitability in the hippocampus dur-
ing pregnancy or elevated estrogen level [8, 10]. These neuronal structural and functional
changes in the hippocampus could result in an increase in bilateral rsftMRI connectivity
strength observed in this study. In fact, the increase in hippocampal effective connectivity after
the administration of estrogen was demonstrated in a positron emission tomography study
[59], which was consistent with our present rsfMRI results. Behaviorally, the bilateral rsfMRI
connectivity increase in the hippocampus could be closely associated to improved memory and
learning performance during pregnancy [1, 4, 34, 60-63].
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Lastly, the neurophysiological basis of resting-state connectivity has been widely stipulated
to closely associate to the structural connectivity though the detailed mechanisms remain
unclear [26, 64-68]. Nevertheless, the present imaging study simultaneously measured the tis-
sue structural FA changes and functional rstMRI connectivity changes in the hippocampus
during pregnancy (Fig 5). The results suggested a coupling between the structural and func-
tional changes measured in hippocampus among the same animals that underwent pregnancy
and exhibited strong behavioral changes. Such correlation also presents direct evidence to sup-
port the close coupling between structural connectivity measured by DTI and functional con-
nectivity measured by rstMRI, an issue presently under debate in the neuroimaging
community.

Inter-Animal Variation in Structural and Functional Measurements

Variation between the rats was observed in both structural and functional measurements (Fig
5). In the pregnancy group, the standard deviation of FA and correlation coefficient was 0.010
and 0.086, respectively at baseline; and 0.011 and 0.077, respectively at G17. Suppose that the
variation was purely contributed by experimental reproducibility and the measurements at two
time-points were independent, the standard deviations of the difference between baseline and
G17 should be 0.015 and 0.115, respectively, since (SDgif)* = (SDpaseline)” + (SDg17)* However,
the standard deviations of the difference between the two time-points were substantially lower
(i.e., 0.006 and 0.051, respectively). This indicated that experimental reproducibility issue was
unlikely to be the sole contributor to the variations in Fig 5 and that the inter-animal variations
in FA and correlation coefficient likely existed. Despite these inter-animal variations, Fig 5
reveals that the structural and functional remodeling in the DG/hippocampus during preg-
nancy might be coupled.

The inter-animal variation of FA in the dorsal DG may be attributed to the fact that the den-
tate gyrus is highly plastic. Previous studies have shown that neurogenesis persists in the DG of
adult rodents [69], where an enriched environment and experience could increase the neuro-
genesis [70, 71]. Running could also increase cell proliferation and neurogenesis in the DG of
mice [72]. Several DTT studies have reported changes in the DG with rats undergoing learning
memory tasks [33, 53] or with rats having epilepsy [73]. In this study, the standard deviation at
baseline was 0.01, which was lower than that (0.05) in the study by Parekh et al [73].

Previous studies have suggested that rsfMRI connectivity variations could be associated
with individual variability in behavior [55, 74]. This variability in rsfMRI connectivity may be
related to individual differences in performance [74]. Given the variability in behavior and per-
formance among individual rats, it is not entirely surprising to observe inter-animal variability
in rstMRI connectivity [75]. Such variability may arise from the different experiences and envi-
ronments during adulthood.

Technical Considerations

Blood oxygen level dependent (BOLD) signal reflects the hemodynamic changes caused by
neuronal activity, but it could be affected by other physiological changes in the brain [76]. Preg-
nancy may introduce physiological changes such as blood flow changes, and globally affect the
BOLD signal fluctuations. ICA is a data driven analysis [37], which could potentially separate
artifacts resulting from motion and/or other global physiological fluctuations such as heart rate
and respiration rate. Thus, the ICA results may be interpreted as being physiologically normal-
ized. In this study, the bilateral hippocampal rstMRI connectivity obtained from SBA and ICA
was found to be consistent (Fig 4A and 4B). They suggested that the observed increase in
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bilateral hippocampal rstMRI connectivity is likely not predominated by the global physiologi-
cal changes during pregnancy.

Future Directions

Our results revealed the potential coupling between tissue structural changes and functional
connectivity changes during pregnancy. However, the underlying causal mechanisms remain
unclear, for which a comprehensive study of pregnancy with direct comparisons with hor-
monal levels and behaviors is desired in future studies. Future studies may also encompass his-
tological examinations to correlate the observed DTI changes with cellular microstructures
(such as intracellular, extracellular, neurons, glia cells and axons), membrane permeability or
water exchange, and other biophysical properties associated with different water populations
[27,28].

Previous studies have reported that the cingulate cortex, hypothalamus, medial preoptic
area, orbitofrontal cortices and amygdala are actively involved during pregnancy [1, 77, 78].
The present study only found the pronounced increase in the bilateral hippocampal connectiv-
ity (but not in the two other major bilateral connectivities analyzed-primary and secondary
somatosensory connectivities). Other connectivities were not examined in the present study
because of the technical challenges in rodent rstMRI (i.e., relatively low SNR and spatial resolu-
tion of raw data, thus low sensitivity in detecting small connectivity changes). Future studies
may employ large sample sizes and improved MRI acquisition and analysis protocol to investi-
gate the rstMRI connectivity changes in these brain regions.

It is also imperative to investigate whether or not the observed DTI and rsfMRI changes are
transient or permanent. There are two critical stages where the brain may alter after parturi-
tion, namely, the lactation period and after weaning [1]. Since pup-induced behavioral changes
exist during lactation, the structural and functional remodeling as observed in the present
study may continue after G17 [79, 80]. After weaning, the estrogen level is known to normalize.
Remodeling may cease; structural and functional normalization may be expected to a certain
extent. Whether these expected physiological changes or the abnormalities of these physiologi-
cal phenomena such as during pre-eclampsia [44, 81] can be detected by DTT or rsftMRI will be
the subject of future studies.

Partial volume effect arises in volumetric images when more than one tissue type occurs in a
voxel [82, 83]. It has been one of the limitations for most rodent DTT and rsfMRI investigations
so far because of the relatively low spatial resolution. To achieve sufficient SNR in EPI images
in this present study, the DTT and rsfMRI images were acquired with relatively low resolution.
Future studies may employ recently developed diffusion methods to increase the spatial resolu-
tion and reduce or/and correct the partial volume effect [84, 85].

Conclusion

The rat pregnancy model was longitudinally examined by in vivo DTT and rsfMRI. Diffusivities
generally increased in the whole brain during pregnancy, directly documenting global tissue
structural changes at microscopic levels that facilitated water molecular movement, for exam-
ple, by cell shrinkage and extracellular space. Regionally, mean diffusivity in the dorsal hippo-
campus and fractional anisotropy in the dorsal dentate gyrus increased more pronouncedly
during pregnancy but not in the control group. Bilateral rstMRI connectivity in the hippocam-
pus also became stronger during pregnancy but not in the control group. Moreover, fractional
anisotropy increase in the dentate gyrus and the functional connectivity increase in bilateral
hippocampi of the pregnancy group appeared to correlate, indicating the potential coupling of
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structural and functional changes in the hippocampus during pregnancy. Pregnancy remodels
the brain, especially the hippocampus, both structurally and functionally.

Supporting Information

S1 File. The customized reference brain template used for inter-animal co-registration. The
template was obtained by co-registering and averaging across eighteen T2-weighted naive rat
brain images (Figure A). The definition of whole brain (WB), gray matter (GM) and white
matter (WM) masks for quantifying the global brain changes between baseline and G17 in
both the pregnancy and control groups. The segmentation criteria for each mask are listed at
the bottom [33] (Figure B). With reference to the anatomy of the hippocampus and the DTI-
based local structural changes, the seed and contralateral region of interest (ROI) were defined,
and used for seed-based analysis (SBA) (Figure C1). The ROI, defined based on the anatomy
of the hippocampus, was used for quantifying the z-score changes obtained from independent
component analysis (ICA) (Figure C2). The mean z-score maps obtained using independent
component analysis (ICA). The bilateral primary somatosensory network and the bilateral sec-
ondary somatosensory network were detected at both the baseline and G17 in both the preg-
nancy and control groups. However, the z-scores across time-points and groups were similar
within the network. These results indicated that the bilateral somatosensory rsfMRI connectiv-
ity strength remained similar before and during pregnancy. Error bars indicate the standard
deviation (Figure D). Comparison between ANOV A followed by post-hoc Bonferroni’s test
and paired t-test in the global structural changes during pregnancy (Figure E). Comparison
between ANOVA followed by post-hoc Bonferroni’s test and paired t-test in the local structural
changes in the dorsal hippocampus and dorsal dentate gyrus during pregnancy (Figure F).
Comparison between ANOVA followed by post-hoc Bonferroni’s test and paired t-test in the
normalized local structural changes in the dorsal hippocampus and dorsal dentate gyrus during
pregnancy (Figure G). Comparison between ANOVA followed by post-hoc Bonferroni’s test
and paired t-test in bilateral hippocampal functional connectivity increase during pregnancy
(Figure H). The average trials for the pregnancy and control groups at both baseline and G17
time-points used for subsequent seed-based and independent component analyses (Table A).
(DOCX)
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