1,238 research outputs found

    Modeling temperature distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing

    Get PDF
    © 2016 by Begell House, Inc. Microexplosion/puffing is rapid disintegration of a water-in-oil emulsion droplet caused by explosive boiling of embedded superheated water sub-droplets. To predict microexplosion/puffing, modeling the temperature distribution inside an emulsion droplet under convective heating is a prerequisite, since the temperature field determines the location of nucleation (vapor bubble initiation from superheated water). In the first part of the present study, convective heating of water-in-oil emulsion droplets under typical combustor conditions is investigated using high-fidelity simulation in order to accurately model inner-droplet temperature distribution. The shear force due to the ambient air flow induces internal circulation inside a droplet. It has been found that for droplets under investigation in the present study, the liquid Peclet number PeL is in a transitional regime of 100 < PeL < 500. The temperature field is therefore somewhat distorted by the velocity field, but the distortion is not strong enough to form Hill's vortex for the temperature field. In the second part of the present study, a novel approach is proposed to model the temperature field distortion by introducing angular dependency of the thermal conductivity and eccentricity of the temperature field. The model can reproduce the main features of the temperature field inside an emulsion droplet, and can be used to predict the nucleation location, which is a key initial condition of microexplosion/puffing

    Vertex importance extension of betweenness centrality algorithm

    Get PDF
    Variety of real-life structures can be simplified by a graph. Such simplification emphasizes the structure represented by vertices connected via edges. A common method for the analysis of the vertices importance in a network is betweenness centrality. The centrality is computed using the information about the shortest paths that exist in a graph. This approach puts the importance on the edges that connect the vertices. However, not all vertices are equal. Some of them might be more important than others or have more significant influence on the behavior of the network. Therefore, we introduce the modification of the betweenness centrality algorithm that takes into account the vertex importance. This approach allows the further refinement of the betweenness centrality score to fulfill the needs of the network better. We show this idea on an example of the real traffic network. We test the performance of the algorithm on the traffic network data from the city of Bratislava, Slovakia to prove that the inclusion of the modification does not hinder the original algorithm much. We also provide a visualization of the traffic network of the city of Ostrava, the Czech Republic to show the effect of the vertex importance adjustment. The algorithm was parallelized by MPI (http://www.mpi-forum.org/) and was tested on the supercomputer Salomon (https://docs.it4i.cz/) at IT4Innovations National Supercomputing Center, the Czech Republic.808726

    Pan-cancer analysis of the extent and consequences of intratumor heterogeneity

    Get PDF
    Intratumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used the bioinformatics tools ‘expanding ploidy and allele frequency on nested subpopulations’ (EXPANDS) and PyClone to detect clones that are present at a >= 10% frequency in 1,165 exome sequences from tumors in The Cancer Genome Atlas. 86% of tumors across 12 cancer types had at least two clones. ITH in the morphology of nuclei was associated with genetic ITH (Spearman’s correlation coefficient, rho = 0.24-0.41; P 2 clones coexisted in the same tumor sample (HR = 1.49, 95% CI: 1.20-1.87). In two independent data sets, copy-number alterations affecting either 75% of a tumor’s genome predicted reduced risk (HR = 0.15, 95% CI: 0.08-0.29). Mortality risk also declined when > 4 clones coexisted in the sample, suggesting a trade-off between the costs and benefits of genomic instability. ITH and genomic instability thus have the potential to be useful measures that can universally be applied to all cancers

    HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes

    Get PDF
    An inwardly rectifying K^+ current is present in atrial cardiac myocytes that is activated by acetylcholine (I_{KACh}). Physiologically, activation of the current in the SA node is important in slowing the heart rate with increased parasympathetic tone. It is a paradigm for the direct regulation of signaling effectors by the Gβγ G-protein subunit. Many questions have been addressed in heterologous expression systems with less focus on the behaviour in native myocytes partly because of the technical difficulties in undertaking comparable studies in native cells. In this study, we characterise a potassium current in the atrial-derived cell line HL-1. Using an electrophysiological approach, we compare the characteristics of the potassium current with those in native atrial cells and in a HEK cell line expressing the cloned Kir3.1/3.4 channel. The potassium current recorded in HL-1 is inwardly rectifying and activated by the muscarinic agonist carbachol. Carbachol-activated currents were inhibited by pertussis toxin and tertiapin-Q. The basal current was time-dependently increased when GTP was substituted in the patch-clamp pipette by the non-hydrolysable analogue GTPγS. We compared the kinetics of current modulation in HL-1 with those of freshly isolated atrial mouse cardiomyocytes. The current activation and deactivation kinetics in HL-1 cells are comparable to those measured in atrial cardiomyocytes. Using immunofluorescence, we found GIRK4 at the membrane in HL-1 cells. Real-time RT-PCR confirms the presence of mRNA for the main G-protein subunits, as well as for M2 muscarinic and A1 adenosine receptors. The data suggest HL-1 cells are a good model to study IKAch

    A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

    Get PDF
    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi1−x_{1-x}Sbx_x single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi1−x_{1-x}Sbx_x is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi0.9_{0.9}Sb0.1_{0.1}, locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007

    Inhibition of PI3K Prevents the Proliferation and Differentiation of Human Lung Fibroblasts into Myofibroblasts: The Role of Class I P110 Isoforms

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-β (TGF-β)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-β signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-β: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-β-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110δ and p110γ are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and β. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110γ and p110α in both TGF-β-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF

    Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses

    Get PDF
    Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
    • …
    corecore