84 research outputs found

    The freshwater Sponge Ephydatia Fluviatilis harbours diverse pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity

    Get PDF
    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT-funded project [PTDC/BIA-MIC/3865/2012]; Federation of European Microbiological Societies (FEMS)info:eu-repo/semantics/publishedVersio

    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

    Get PDF
    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant number DEB-1442113). Received by AR. U.S. National Library of Medicine training grant (grant number 2T15LM007450). Received by ALL. Conselho Nacional de Desenvolvimento Cientı´fico e 573 Tecnológico. Northern Portugal Regional Operational Programme (grant number NORTE-01- 0145-FEDER-000013). Received by FR. Fundação de Amparo à Pesquisa do 572 Estado de São Paulo. Received by GHG. National Institutes of Health (grant number R01 AI065728-01). Received by NPK. National Science Foundation (grant number IOS-1401682). Received by JHW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology

    Resistance to streptomycin in a producing strain of Streptomyces griseus

    No full text
    Streptomyces griseus S104 was sensitive to streptomycin during exponential growth in a medium which, in the subsequent stationary phase, supported production of the antibiotic in yields above 200 µg/ml. When antibiotic production began cultures developed a tolerance toward their lethal metabolite. This was not due to an increase in pH associated with antibiotic production, since pH effects on streptomycin sensitivity in S. griseus were in the reverse direction. However, the degree of tolerance was directly related to the amount of cell materia1 present. Streptomycin production caused no change in the proportion of resistant variants in the population, nor did it cause the severe inhibition of protein synthesis observed in non-producing cultures exposed to the antibiotic. The lack of an effect on protein synthesis is attributed to the absence of streptomycin within the cytoplasm since soluble extracts from myceliurn harvested in the production phase were inactive when bio-assayed immediately after cell disuptionH. however, they developed antibacterial activity rapidly when heated, and more slowly when incubated at 25°C. The addition of phosphatase inhibitors during incubation prevented the appearance of antibiotic activitv, and it was concluded that a small amount of streotomvcin phosphate is present in the rnycelium during antibiotic production. Differences in (14C) streotomvcin uptake suggested that the myceliurn was appreciably less permeable to the antibiotic in the production phase than during exponential growth. However, a small amount was taken up and much of it was in the soluble fraction of disrupted cells. Bioassays showed that this 14C-labeled antibiotic within the cells had been partially inactivated, suggesting that conversion of streptomycin to an inactive derivative is involved in the mechanism which protects the organism from its metabolite

    Action of streptomycin on the growth of Streptomyces griseus

    No full text
    A sterptomycin-producing culture of Streptomyces griseus was sensitive to streptomycin, but inhibition was temporary, and cultures supplemented with the antibiotic up to 100 microgram/ml grew after a lag. Streptomycyn tolerance developed, not by inactivation of the antibiotic but by selection of resistant variants in the natural population. Addition of streptomycin to growing cultures caused a drastic reduction in protein synthesis and an accumulation of "stuck" (70 S) ribosomes within the mycelium. Although the effect on protein synthesis could not be confirmed in vitro because cell extracts fro S. griseus contained an inhibitor of plyuridilic-acid-directed polymerization of L-phenylalanine, it is concluded that streptomycin prevents the growth of this organism by a mechanism similar to that observed with other bacteria and that the tolerance of producing cultures cannot be attributed to the presence of streptomycin-resistant ribosome

    Genetic recombination in Streptomyces species 3022a

    No full text
    Mutation with ultraviolet light and chemical mutagens yielded strains with auxotrophic and streptomycin-resistance markers. These were used to show the existence of genetic recombination in Streptomyces species 3022a and to construct a linkage map for 17 marker loci

    Streptomycin resistance in strains of Streptomyces species 3022a

    No full text
    Resistance to low (5 µg/ml) concentrations of streptomycin in agar media was not inherited by all of the surviving population. Outgrowth of cultures in liquid media supplemented with the antibiotic depended upon inoculum size. Antibiotic titers in the supplemented cultures ecreased during incubation, and an inactive radioactive product was detected when [I4C] streptomycin was used. This low-level resistance is, therefore, attributed to enzymic inactivation of the antibiotic. Growth in 10 pgld or higher concentrations of streptomycin on agar media was due to selection of resistant variants present in the parent strain. A range of such variants existed, decreasing in frequency as their degree of resistance increased. Examination of one that was resistant to moderate concentrations of streptomycin, (25 µg/ml) and a second that was resistant to high (100 µg/ml) concentrations of streptomycin suggested that both possessed ribosomes which had lower affinity for the antibiotic than those of the parent strain, and that tolerance to high levels of streptomycin was due to a resistant ribosomal system for protein biosynthesis
    corecore