45 research outputs found

    S100B and homocysteine in the acute alcohol withdrawal syndrome

    Get PDF
    Elevations of serum homocysteine levels are a consistent finding in alcohol addiction. Serum S100B levels are altered in different neuropsychiatric disorders but not well investigated in alcohol withdrawal syndromes. Because of the close connection of S100B to ACTH and glutamate secretion that both are involved in neurodegeneration and symptoms of alcoholism the relationship of S100B and homocysteine to acute withdrawal variables has been examined. A total of 22 male and 9 female inpatients (mean age 46.9 ± 9.7 years) with an ICD-10 diagnosis of alcohol addiction without relevant affective comorbidity were examined on admission and after 24, 48, and 120 h during withdrawal. S100B and homocysteine levels in serum were collected, and severity of withdrawal symptoms (AWS-scale), applied withdrawal medication, initial serum ethanol levels and duration of addiction were recorded. Serum S100B and homocysteine levels declined significantly (P < .05) over time. Both levels declined with withdrawal syndrome severity. Females showed a trend to a more intense decline in serum S100B levels compared to males at day 5 (P = .06). Homocysteine levels displayed a negative relationship to applied amount of clomethiazole (P < .05) and correlated with age of onset of addiction. No withdrawal seizures were recorded during the trial. As it is known for homocysteine, S100B revealed to decline rapidly over withdrawal treatment in alcoholism. This effect is more pronounced in female patients. S100B could be of relevance in the neurobiology of alcohol withdrawal syndromes. It may be indirectly related to the level of stress level or glutamatergic activity during alcohol withdrawal

    The Tyrosine Kinase c-Src Directly Mediates Growth Factor-Induced Notch-1 and Furin Interaction and Notch-1 Activation in Pancreatic Cancer Cells

    Get PDF
    The proteolytic activity of Furin responsible for processing full length Notch-1 (p300) plays a critical role in Notch signaling. The amplitude and duration of Notch activity can be regulated at various points in the pathway, but there has been no report regarding regulation of the Notch-1-Furin interaction, despite its importance. In the present study, we found that the Notch-1-Furin interaction is regulated by the non-receptor tyrosine kinase, c-Src. c-Src and Notch-1 are physically associated, and this association is responsible for Notch-1 processing and activation. We also found that growth factor TGF-α, an EGFR ligand, and PDGF-BB, a PDGFR ligand, induce the Notch-1-Furin interaction mediated by c-Src. Our results support three new and provocative conclusions: (1) The association between Notch-1 and Furin is a well-regulated process; (2) Extracellular growth factor signals regulate this interaction, which is mediated by c-Src; (3) There is cross-talk between the plasma growth factor receptor-c-Src and Notch pathways. Co-localization of Notch-1 and c-Src was confirmed in xenograft tumor tissues and in the tissues of pancreatic cancer patients. Our findings have implications for the mechanism by which the Notch and growth factor receptor-c-Src signaling pathways regulate carcinogenesis and cancer cell growth

    New Insights into Alzheimer's Disease Progression: A Combined TMS and Structural MRI Study

    Get PDF
    BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas. METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness. CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD

    Text-to-Speech Synthesis with Dynamic Control of Source Parameters

    No full text

    Demyelination in mild cognitive impairment suggests progression path to Alzheimer's disease.

    Get PDF
    The preclinical Alzheimer's disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination

    Notch post-translationally regulates β-catenin protein in stem and progenitor cells

    No full text
    Cellular decisions of self-renewal or differentiation arise from integration and reciprocal titration of numerous regulatory networks. Notch and Wnt/β-Catenin signaling often intersect in stem and progenitor cells and regulate one another transcriptionally. The biological outcome of signaling through each pathway often depends on the context and timing as cells progress through stages of differentiation. Here, we show that membrane-bound Notch physically associates with unphosphorylated (active) β-Catenin in stem and colon cancer cells and negatively regulates post-translational accumulation of active β-Catenin protein. Notch-dependent regulation of β-Catenin protein did not require ligand-dependent membrane cleavage of Notch or the glycogen synthase kinase-3β-dependent activity of the β-catenin destruction complex. It did, however, require the endocytic adaptor protein, Numb, and lysosomal activity. This study reveals a previously unrecognized function of Notch in negatively titrating active β-Catenin protein levels in stem and progenitor cells
    corecore