52 research outputs found

    Multi-state models and arthroplasty histories after unilateral total hip arthroplasties: Introducing the Summary Notation for Arthroplasty Histories

    Get PDF
    Background and purpose: An increasing number of patients have several joint replacement procedures during their lifetime. We investigated the use and suitability of multi-state model techniques in providing a more comprehensive analysis and description of complex arthroplasty histories held in arthroplasty registries than are allowed for with traditional survival methods. Patients and methods: We obtained data from the Australian Orthopaedic Association National Joint Replacement Registry on patients (n = 84,759) who had undergone a total hip arthroplasty for osteoarthritis in the period 2002–2008. We set up a multi-state model where patients were followed from their first recorded arthroplasty to several possible states: revision of first arthroplasty, either a hip or knee as second arthroplasty, revision of the second arthroplasty, and death. The Summary Notation for Arthroplasty Histories (SNAH) was developed in order to help to manage and analyze this type of data. Results: At the end of the study period, 12% of the 84,759 patients had received a second hip, 3 times as many as had received a knee. The estimated probabilities of having received a second arthroplasty decreased with age. Males had a lower transition rate for receiving a second arthroplasty, but a higher mortality rate. Interpretation: Multi-state models in combination with SNAH codes are well suited to the management and analysis of arthroplasty registry data on patients who experience multiple joint procedures over time. We found differences in the progression of joint replacement procedures after the initial total hip arthroplasty regarding type of joint, age, and sex.Marianne H Gillam, Philip Ryan, Amy Salter, Stephen E Grave

    Crude incidence in two-phase designs in the presence of competing risks.

    Get PDF
    BackgroundIn many studies, some information might not be available for the whole cohort, some covariates, or even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence accounting for competing events has been proposed. This is relevant in the presence of multiple types of events, where estimation of event type specific quantities are needed for evaluating outcome.MethodsWe develop a non parametric estimator of the cumulative incidence function of events accounting for possible competing events. It handles a general sampling design by weights derived from the sampling probabilities. The variance is derived from the influence function of the subdistribution hazard.ResultsThe proposed method shows good performance in simulations. It is applied to estimate the crude incidence of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in a subsample of lost patients and to obtain a valid estimate of connection to care.ConclusionsA valid estimator for cumulative incidence of events accounting for competing risks under a general sampling design from an infinite target population is derived

    How to handle mortality when investigating length of hospital stay and time to clinical stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospital length of stay (LOS) and time for a patient to reach clinical stability (TCS) have increasingly become important outcomes when investigating ways in which to combat Community Acquired Pneumonia (CAP). Difficulties arise when deciding how to handle in-hospital mortality. Ad-hoc approaches that are commonly used to handle time to event outcomes with mortality can give disparate results and provide conflicting conclusions based on the same data. To ensure compatibility among studies investigating these outcomes, this type of data should be handled in a consistent and appropriate fashion.</p> <p>Methods</p> <p>Using both simulated data and data from the international Community Acquired Pneumonia Organization (CAPO) database, we evaluate two ad-hoc approaches for handling mortality when estimating the probability of hospital discharge and clinical stability: 1) restricting analysis to those patients who lived, and 2) assigning individuals who die the "worst" outcome (right-censoring them at the longest recorded LOS or TCS). Estimated probability distributions based on these approaches are compared with right-censoring the individuals who died at time of death (the complement of the Kaplan-Meier (KM) estimator), and treating death as a competing risk (the cumulative incidence estimator). Tests for differences in probability distributions based on the four methods are also contrasted.</p> <p>Results</p> <p>The two ad-hoc approaches give different estimates of the probability of discharge and clinical stability. Analysis restricted to patients who survived is conceptually problematic, as estimation is conditioned on events that happen <it>at a future time</it>. Estimation based on assigning those patients who died the worst outcome (longest LOS and TCS) coincides with the complement of the KM estimator based on the subdistribution hazard, which has been previously shown to be equivalent to the cumulative incidence estimator. However, in either case the time to in-hospital mortality is ignored, preventing simultaneous assessment of patient mortality in addition to LOS and/or TCS. The power to detect differences in underlying hazards of discharge between patient populations differs for test statistics based on the four approaches, and depends on the underlying hazard ratio of mortality between the patient groups.</p> <p>Conclusions</p> <p>Treating death as a competing risk gives estimators which address the clinical questions of interest, and allows for simultaneous modelling of both in-hospital mortality and TCS / LOS. This article advocates treating mortality as a competing risk when investigating other time related outcomes.</p

    RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia

    Get PDF
    RAS pathway mutations have been linked to relapse and chemotherapy resistance in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, comprehensive data on the frequency and prognostic value of subclonal mutations in well-defined subgroups using highly sensitive and quantitative methods are lacking. Targeted deep sequencing of 13 RAS pathway genes was performed in 461 pediatric BCP-ALL cases at initial diagnosis and in 19 diagnos

    Summary

    No full text

    Revision surgery is overestimated in hip replacement

    No full text
    OBJECTIVES: The Kaplan-Meier estimation is widely used in orthopedics to calculate the probability of revision surgery. Using data from a long-term follow-up study, we aimed to assess the amount of bias introduced by the Kaplan-Meier estimator in a competing risk setting. METHODS: We describe both the Kaplan-Meier estimator and the competing risk model, and explain why the competing risk model is a more appropriate approach to estimate the probability of revision surgery when patients die in a hip revision surgery cohort. In our study, a total of 62 acetabular revisions were performed. After a mean of 25 years, no patients were lost to follow-up, 13 patients had undergone revision surgery and 33 patients died of causes unrelated to their hip. RESULTS: The Kaplan-Meier estimator overestimates the probability of revision surgery in our example by 3%, 11%, 28%, 32% and 60% at five, ten, 15, 20 and 25 years, respectively. As the cumulative incidence of the competing event increases over time, as does the amount of bias. CONCLUSIONS: Ignoring competing risks leads to biased estimations of the probability of revision surgery. In order to guide choosing the appropriate statistical analysis in future clinical studies, we propose a flowchart
    corecore