61 research outputs found

    Microbial diversity and biogeochemical cycling in soda lakes

    Get PDF
    Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments

    A bait-trap assay to characterize soil microbes that exhibit chemotaxis to root exudates

    No full text
    Here, we describe a novel "bait-trap" assay, which facilitates capture of soil microorganisms that exhibit chemotaxis to chemical attractants, such as root exudates. These multi-population assemblages represent potential guilds and can be characterized using a wide-range of culture-dependent and culture-independent methods. While in this example, we use root exudates as bait, any water-soluble compound(s) could be used. Hence, the potential applications for the assay are diverse

    Soil-Borne Legacies of Disease in Arabidopsisthaliana

    Get PDF
    The rhizosphere microbiome of plants is essential for plant growth and health. Recent studies have shown that upon infection of leaves with a foliar pathogen, the composition of the root microbiome is altered and enriched with bacteria that in turn can systemically protect the plant against the foliar pathogen. This protective effect is extended to successive populations of plants that are grown on soil that was first conditioned by pathogen-infected plants, a phenomenon that was coined "the soil-borne legacy." Here we provide a detailed protocol for soil-borne legacy experiments with the model plant Arabidopsis thaliana after infection with the obligate biotrophic pathogen Hyaloperonospora arabidopsidis. This protocol can easily be extended to infection with other pathogens or even infestation with herbivorous insects and can function as a blueprint for soil-borne legacy experiments with crop species
    corecore