6 research outputs found

    Reference Data for the Ruff Figural Fluency Test Stratified by Age and Educational Level

    Get PDF
    The Ruff Figural Fluency Test (RFFT) was developed to avoid the difficulties that were encountered in earlier tests of figural fluency. Although the test characteristics of the RFFT seem to be good and it is a valuable addition to neuropsychological assessments, reference data are still scarce. To this aim, we required 2,404 community dwelling persons in Groningen, the Netherlands to perform the RFFT. All 1,651 persons with a complete RFFT and known educational level formed the reference sample. Their age ranged from 35 to 82 years and their educational level from primary school to university grade. Ninety-six percent of the persons were of Western European descent. All tests were analyzed by two independent examiners and subsequently three measures were calculated: number of unique designs, number of perseverative errors and error ratio. The main finding was that performance on the RFFT was dependent on age and educational level. This was not only observed in older persons but also in young and middle-aged persons. Reference data for the three RFFT measures are presented in groups of five years of age ranging from 35–39 years to 75 years or older

    STED Super-Resolution Microscopy of Clinical Paraffin-Embedded Human Rectal Cancer Tissue.

    No full text
    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.Open-Access-Publikationsfonds 2014peerReviewe

    Alopecia areata.

    No full text
    Alopecia areata is an autoimmune disorder characterized by transient, non-scarring hair loss and preservation of the hair follicle. Hair loss can take many forms ranging from loss in well-defined patches to diffuse or total hair loss, which can affect all hair-bearing sites. Patchy alopecia areata affecting the scalp is the most common type. Alopecia areata affects nearly 2% of the general population at some point during their lifetime. Skin biopsies of affected skin show a lymphocytic infiltrate in and around the bulb or the lower part of the hair follicle in the anagen (hair growth) phase. A breakdown of immune privilege of the hair follicle is thought to be an important driver of alopecia areata. Genetic studies in patients and mouse models have shown that alopecia areata is a complex, polygenic disease. Several genetic susceptibility loci were identified to be associated with signalling pathways that are important to hair follicle cycling and development. Alopecia areata is usually diagnosed based on clinical manifestations, but dermoscopy and histopathology can be helpful. Alopecia areata is difficult to manage medically, but recent advances in understanding the molecular mechanisms have revealed new treatments and the possibility of remission in the near future. Nat Rev Dis Primers 2017 Mar 16; 3:1701

    Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment

    No full text
    corecore