5 research outputs found

    The role of complex cues in social and reproductive plasticity

    Get PDF
    Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly ‘mismatches’ between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity

    Brain–gut–microbiome interactions in obesity and food addiction

    No full text
    Normal eating behavior is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction represents a complex, maladaptive eating behavior that reflects alterations in brain–gut–microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signaling playing a role. Early life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signaling) and intestinal (vagal afferent function, metabolic toxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biological model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis

    Multiple Sclerosis and T Lymphocytes: An Entangled Story

    No full text
    corecore