620 research outputs found
A Logical Product Approach to Zonotope Intersection
We define and study a new abstract domain which is a fine-grained combination
of zonotopes with polyhedric domains such as the interval, octagon, linear
templates or polyhedron domain. While abstract transfer functions are still
rather inexpensive and accurate even for interpreting non-linear computations,
we are able to also interpret tests (i.e. intersections) efficiently. This
fixes a known drawback of zonotopic methods, as used for reachability analysis
for hybrid sys- tems as well as for invariant generation in abstract
interpretation: intersection of zonotopes are not always zonotopes, and there
is not even a best zonotopic over-approximation of the intersection. We
describe some examples and an im- plementation of our method in the APRON
library, and discuss some further in- teresting combinations of zonotopes with
non-linear or non-convex domains such as quadratic templates and maxplus
polyhedra
Automatic Abstraction for Congruences
One approach to verifying bit-twiddling algorithms is to derive invariants between the bits that constitute the variables of a program. Such invariants can often be described with systems of congruences where in each equation , (unknown variable m)\vec{c}\vec{x}$ is a vector of propositional variables (bits). Because of the low-level nature of these invariants and the large number of bits that are involved, it is important that the transfer functions can be derived automatically. We address this problem, showing how an analysis for bit-level congruence relationships can be decoupled into two parts: (1) a SAT-based abstraction (compilation) step which can be automated, and (2) an interpretation step that requires no SAT-solving. We exploit triangular matrix forms to derive transfer functions efficiently, even in the presence of large numbers of bits. Finally we propose program transformations that improve the analysis results
Interval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools
such as Matlab/Simulink. Numerical simulation is the central technique of
development and verification of such tools. Floating-point arithmetic, that is
well-known to only provide approximated results, is omnipresent in this
activity. In order to validate the behaviors of numerical simulations using
abstract interpretation-based static analysis, we present, theoretically and
with experiments, a new partially relational abstract domain dedicated to
floating-point variables. It comes from interval expansion of non-linear
functions using slopes and it is able to mimic all the behaviors of the
floating-point arithmetic. Hence it is adapted to prove the absence of run-time
errors or to analyze the numerical precision of embedded control systems
Peptide immobilisation on porous silicon surface for metal ions detection
In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization
Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing
Titanium dioxide (TiO2) with highly exposed {001} facets was synthesized through a facile solvo-thermal method and its surface was decorated by using reduced graphene oxide (rGO) sheets. The morphology and chemical composition of the prepared rGO/TiO2 {001} nanocomposite were examined by using suitable characterization techniques. The rGO/TiO2 {001} nanocomposite was used to modify glassy carbon electrode (GCE), which showed higher electrocatalytic activity towards the oxidation of dopamine (DA) and ascorbic acid (AA), when compared to unmodified GCE. The differential pulse voltammetric studies revealed good sensitivity and selectivity nature of the rGO/TiO2 {001} nanocomposite modified GCE for the detection of DA in the presence of AA. The modified GCE exhibited a low electrochemical detection limit of 6 μM over the linear range of 2–60 μM. Overall, this work provides a simple platform for the development of GCE modified with rGO/TiO2 {001} nanocomposite with highly exposed {001} facets for potential electrochemical sensing applications
Electrochemistry of nanozeolite-immobilized cytochrome c in aqueous and nonaqueous solutions
peer-reviewedThe electrochemical properties of cytochrome c (cyt c) immobilized on multilayer nanozeolite-modified electrodes have been examined in aqueous and nonaqueous solutions. Layers of Linde type-L zeolites were assembled on indium tin oxide (ITO) glass electrodes followed by the adsorption of cyt c, primarily via electrostatic interactions, onto modified ITO electrodes. The heme protein displayed a quasi-reversible response in aqueous solution with a redox potential of +324 mV (vs NHE), and the surface coverage (Gamma*) increased linearly for the first four layers and then gave a nearly constant value of 200 pmol cm(-2). On immersion of the modified electrodes in 95% (v/v) nonaqueous solutions, the redox potential decreased significantly, a decrease that originated from changes in both the enthalpy and entropy of reduction. On reimmersion of the modified electrode in buffer, the faradic response immediately returned to its original value. These results demonstrate that nanozeolites are potential stable supports for redox proteins and enzymes.ACCEPTEDpeer-reviewe
Electron Transport Properties of Single-Molecule-Bearing Multiple Redox Levels Studied by EC-STM/STS
Multielectron systems as possible components of molecular electronics devices are attracting compelling experimental and theoretical interest. Here we studied by electrochemical scanning tunneling techniques (EC-STMicroscopy and EC-STSpectroscopy) the electron transport properties of a redox molecule endowed with two redox levels, namely, the hydroquinone/quinone (H2Q/Q) couple. By forming self-assembled monolayers on Au(111) of oligo-phenylene-vinylene (OPV) derivatized H2Q/Q moieties, we were able to explore the features of the tunneling current/overpotential relation in the EC-STS setup. The behavior of the tunneling current sheds light onto the mechanism of electron transport involving the redox levels of the H2Q/Q redox pair coupled to tip and substrate electrodes
Fermi-GBM Discovery of GRB 221009A: An Extraordinarily Bright GRB from Onset to Afterglow
We report the discovery of GRB 221009A, the highest flux gamma-ray burst ever observed by the Fermi Gamma-ray Burst Monitor (GBM). This GRB has continuous prompt emission lasting more than 600 seconds which smoothly transitions to afterglow visible in the GBM energy range (8 keV--40 MeV), and total energetics higher than any other burst in the GBM sample. By using a variety of new and existing analysis techniques we probe the spectral and temporal evolution of GRB 221009A. We find no emission prior to the GBM trigger time (t0; 2022 October 9 at 13:16:59.99 UTC), indicating that this is the time of prompt emission onset. The triggering pulse exhibits distinct spectral and temporal properties suggestive of the thermal, photospheric emission of shock-breakout, with significant emission up to ∼15 MeV. We characterize the onset of external shock at t0+600 s and find evidence of a plateau region in the early-afterglow phase which transitions to a slope consistent with Swift-XRT afterglow measurements. We place the total energetics of GRB 221009A in context with the rest of the GBM sample and find that this GRB has the highest total isotropic-equivalent energy (Eγ,iso=1.0×10^55 erg) and second highest isotropic-equivalent luminosity (Lγ,iso=9.9×10^53 erg/s) based on redshift of z = 0.151. These extreme energetics are what allowed us to observe the continuously emitting central engine of GBM from the beginning of the prompt emission phase through the onset of early afterglow
- …