1,548 research outputs found

    Solution of Two-Body Bound State Problems with Confining Potentials

    Full text link
    The homogeneous Lippmann-Schwinger integral equation is solved in momentum space by using confining potentials. Since the confining potentials are unbounded at large distances, they lead to a singularity at small momentum. In order to remove the singularity of the kernel of the integral equation, a regularized form of the potentials is used. As an application of the method, the mass spectra of heavy quarkonia, mesons consisting from heavy quark and antiquark (Υ(bbˉ),ψ(ccˉ))(\Upsilon(b\bar{b}), \psi(c\bar{c})), are calculated for linear and quadratic confining potentials. The results are in good agreement with configuration space and experimental results.Comment: 6 pages, 5 table

    Scaling functions of two-neutron separation energies of 20C^{20}C with finite range potentials

    Full text link
    The behaviour of an Efimov excited state is studied within a three-body Faddeev formalism for a general neutron-neutron-core system, where neutron-core is bound and neutron-neutron is unbound, by considering zero-ranged as well as finite-ranged two-body interactions. For the finite-ranged interactions we have considered a one-term separable Yamaguchi potential. The main objective is to study range corrections in a scaling approach, with focus in the exotic carbon halo nucleus 20C^{20}C

    Effective range from tetramer dissociation data for cesium atoms

    Full text link
    The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances, where deviations of experimental values from universal model predictions are associated to effective range corrections. The effective range correction is extracted, with a weighted average given by 3.9±0.8RvdW\pm 0.8 R_{vdW}, where RvdWR_{vdW} is the van der Waals length scale; which is consistent with the van der Waals potential tail for the Cs2Cs_2 system. The method can be generally applied to other cold atom experimental setups to determine the contribution of the effective range to the tetramer dissociation position.Comment: A section for two-, three- and four-boson bound state formalism is added, accepted for publication in Phys. Rev.

    Probing the Efimov discrete scaling in atom-molecule collision

    Full text link
    The discrete Efimov scaling behavior, well-known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of atom-molecule elastic cross-section in mass imbalanced systems. That happens in the collision of a heavy atom with mass mHm_H with a weakly-bound dimer formed by the heavy atom and a lighter one with mass mL≪mHm_L \ll m_H. Approaching the heavy-light unitary limit the s−s-wave elastic cross-section σ\sigma will present a sequence of zeros/minima at collision energies following closely the Efimov geometrical law. Our results open a new perspective to detect the discrete scaling behavior from low-energy scattering data, which is timely in view of the ongoing experiments with ultra-cold binary mixtures having strong mass asymmetries, such as Lithium and Caesium or Lithium and Ytterbium

    Solutions of the bound state Faddeev-Yakubovsky equations in three dimensions by using NN and 3N potential models

    Full text link
    A recently developed three-dimensional approach (without partial-wave decomposition) is considered to investigate solutions of Faddeev-Yakubovsky integral equations in momentum space for three- and four-body bound states, with the inclusion of three-body forces. In the calculations of the binding energies, spin-dependent nucleon-nucleon (NN) potential models (named, S3_{3}, MT-I/III, YS-type and P5.5_{5.5}GL) are considered along with the scalar two-meson exchange three-body potential. Good agreement of the presently reported results with the ones obtained by other techniques are obtained, demonstrating the advantage of an approach in which the formalism is much more simplified and easy to manage for direct computation.Comment: 16 pages, 1 figure and 6 tables; to appear in Physical review

    Identification of the Thyroid Transcription Factor-1 as a Target for Rat MST2 Kinase

    Get PDF
    Abstract Thyroid transcription factor-1 (TTF-1) is a homeodomain-containing transcription factor that is required for thyroid-specific expression of the thyroglobulin and thyroperoxidase genes as well as for lung-specific expression of the surfactant protein A, B, and C and the CC10 and the HNF-3α genes. TTF-1 is a phosphoprotein, and the phosphorylation of TTF-1 has been studied already. However, the kinase(s) that could be responsible for this phosphorylation have not been known. In this paper we report the identification by in-gel kinase assay of a 56-kDa serine/threonine kinase that is able to phosphorylate TTF-1 in thyroid cells. The cloning of this kinase revealed that we had identified the rat homolog of the human MST2 kinase. The pathway in which human MST2 functions is not known; however, it does not appear to involve either mitogen-activated protein kinases such as Erk1 and Erk2 nor the stress-activated protein kinases such as JNK and p38. We show that the activity responsible for TTF-1 phosphorylation is constitutive in thyroid cells. Furthermore, we demonstrate that TTF-1 is phosphorylatedin vivo by rMST2 at the same residues that had been identified previously as the major phosphorylation sites. Thus, TTF-1 represents the first identified target of this class of protein kinases

    Light storage protocols in Tm:YAG

    Full text link
    We present two quantum memory protocols for solids: A stopped light approach based on spectral hole burning and the storage in an atomic frequency comb. These procedures are well adapted to the rare-earth ion doped crystals. We carefully clarify the critical steps of both. On one side, we show that the slowing-down due to hole-burning is sufficient to produce a complete mapping of field into the atomic system. On the other side, we explain the storage and retrieval mechanism of the Atomic Frequency Comb protocol. This two important stages are implemented experimentally in Tm3+^{3+}- doped yttrium-aluminum-garnet crystal

    Characterization of a two-transmon processor with individual single-shot qubit readout

    Full text link
    We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields the \sqrt{iSWAP} two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%

    Four-boson scale near a Feshbach resonance

    Full text link
    We show that an independent four-body momentum scale μ(4)\mu_{(4)} drives the tetramer binding energy for fixed trimer energy (or three-body scale μ(3)\mu_{(3)}) and large scattering length (aa). The three- and four-body forces from the one-channel reduction of the atomic interaction near a Feshbach resonance disentangle μ(4)\mu_{(4)} and μ(3)\mu_{(3)}. The four-body independent scale is also manifested through a family of Tjon-lines, with slope given by μ(4)/μ(3)\mu_{(4)}/\mu_{(3)} for a−1=0a^{-1}=0. There is the possibility of a new renormalization group limit cycle due to the new scale
    • …
    corecore