26 research outputs found

    Biomass and Stored Carbohydrate Compensation after Above-Ground Biomass Removal in a Perennial Herb: Does Environmental Productivity Play a Role?

    Get PDF
    Many plant species are able to tolerate severe disturbance leading to removal of a substantial portion of the body by resprouting from intact or fragmented organs. Resprouting enables plants to compensate for biomass loss and complete their life cycles. The degree of disturbance tolerance, and hence the ecological advantage of damage tolerance (in contrast to alternative strategies), has been reported to be affected by environmental productivity. In our study, we examined the influence of soil nutrients (as an indicator of environmental productivity) on biomass and stored carbohydrate compensation after removal of aboveground parts in the perennial resprouter Plantago lanceolata. Specifically, we tested and compared the effects of nutrient availability on biomass and carbon storage in damaged and undamaged individuals. Damaged plants of P. lanceolata compensated neither in terms of biomass nor overall carbon storage. However, whereas in the nutrient-poor environment, root total non-structural carbohydrate concentrations (TNC) were similar for damaged and undamaged plants, in the nutrient-rich environment, damaged plants had remarkably higher TNC than undamaged plants. Based on TNC allocation patterns, we conclude that tolerance to disturbance is promoted in more productive environments, where higher photosynthetic efficiency allows for successful replenishment of carbohydrates. Although plants under nutrient-rich conditions did not compensate in terms of biomass or seed production, they entered winter with higher content of carbohydrates, which might result in better performance in the next growing season. This otherwise overlooked compensation mechanism might be responsible for inconsistent results reported from other studies

    Anticipatory Behavior of the Clonal Plant Fragaria vesca

    Get PDF
    Active foraging for patchy resources is a crucial feature of many clonal plant species. It has been recently shown that plants’ foraging for resources can be facilitated by anticipatory behavior via association of resource position with other environmental cues. We therefore tested whether clones of Fragaria vesca are able to associate and memorize positions of soil nutrients with particular light intensity, which will consequently enable them anticipating nutrients in new environment. We trained clones of F. vesca for nutrients to occur either in shade or in light. Consequently, we tested their growth response to differing light intensity in the absence of soil nutrients. We also manipulated epigenetic status of a subset of the clones to test the role of DNA methylation in the anticipatory behavior. Clones of F. vesca were able to associate presence of nutrients with particular light intensity, which enabled them to anticipate nutrient positions in the new environment based on its light intensity. Clones that had been trained for nutrients to occur in shade increased placement of ramets to shade whereas clones trained for nutrients to occur in light increased biomass of ramets in light. Our study clearly shows that the clonal plant F. vesca is able to relate two environmental factors, light and soil nutrients, and use this connection in anticipatory behavior. We conclude that anticipatory behavior can substantially improve the ability of clonal plants to utilize scarce and unevenly distributed resources

    Epigenetic variation in plant responses to defence hormones

    Get PDF
    Background and Aims There is currently much speculation about the role of epigenetic variation as a determinant of heritable variation in ecologically important plant traits. However, we still know very little about the phenotypic consequences of epigenetic variation, in particular with regard to more complex traits related to biotic interactions. Methods Here, a test was carried out to determine whether variation in DNA methylation alone can cause heritable variation in plant growth responses to jasmonic acid and salicylic acid, two key hormones involved in induction of plant defences against herbivores and pathogens. In order to be able to ascribe phenotypic differences to epigenetic variation, the hormone responses were studied of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana - lines that are highly variable at the level of DNA methylation but nearly identical at the level of DNA sequence. Key Results Significant heritable variation was found among epiRILs both in the means of phenotypic traits, including growth rate, and in the degree to which these responded to treatment with jasmonic acid and salicylic acid. Moreover, there was a positive epigenetic correlation between the responses of different epiRILs to the two hormones, suggesting that plant responses to herbivore and pathogen attack may have a similar molecular epigenetic basis. Conclusions This study demonstrates that epigenetic variation alone can cause heritable variation in, and thus potentially microevolution of, plant responses to defence hormones. This suggests that part of the variation of plant defences observed in natural populations may be due to underlying epigenetic, rather than entirely genetic, variatio

    Biomass and Stored Carbohydrate Compensation after Above-Ground Biomass Removal in a Perennial Herb: Does Environmental Productivity Play a Role?

    Get PDF
    Many plant species are able to tolerate severe disturbance leading to removal of a substantial portion of the body by resprouting from intact or fragmented organs. Resprouting enables plants to compensate for biomass loss and complete their life cycles. The degree of disturbance tolerance, and hence the ecological advantage of damage tolerance (in contrast to alternative strategies), has been reported to be affected by environmental productivity. In our study, we examined the influence of soil nutrients (as an indicator of environmental productivity) on biomass and stored carbohydrate compensation after removal of aboveground parts in the perennial resprouter Plantago lanceolata. Specifically, we tested and compared the effects of nutrient availability on biomass and carbon storage in damaged and undamaged individuals. Damaged plants of P. lanceolata compensated neither in terms of biomass nor overall carbon storage. However, whereas in the nutrient-poor environment, root total non-structural carbohydrate concentrations (TNC) were similar for damaged and undamaged plants, in the nutrient-rich environment, damaged plants had remarkably higher TNC than undamaged plants. Based on TNC allocation patterns, we conclude that tolerance to disturbance is promoted in more productive environments, where higher photosynthetic efficiency allows for successful replenishment of carbohydrates. Although plants under nutrient-rich conditions did not compensate in terms of biomass or seed production, they entered winter with higher content of carbohydrates, which might result in better performance in the next growing season. This otherwise overlooked compensation mechanism might be responsible for inconsistent results reported from other studies

    Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens

    Get PDF
    Transgenerational effects (TGE) can modify phenotypes of offspring generations playing thus a potentially important role in ecology and evolution of many plant species. These effects have been studied mostly across generations of sexually reproducing species. A substantial proportion of plant species are however reproducing asexually, for instance via clonal growth. TGE are thought to be enabled by heritable epigenetic modification of DNA, although unambiguous evidence is still scarce. On the clonal herb white clover (Trifolium repens), we tested the generality of clonal TGE across five genotypes and five parental environments including soil contamination and above-ground competition. Moreover, by genome wide-methylation variation analysis we explored the role of drought, one of the parental environments that triggered the strongest TGE. We tested the induction of epigenetic changes in offspring generations using several intensities and durations of drought stress. We found that TGE of different environments were highly genotype specific and all tested environments triggered TGE at least in some genotypes. In addition, parental drought stresses triggered epigenetic change in T. repens and most of the induced epigenetic change was maintained across several clonal offspring generations. We conclude that TGE are common and genotype specific in clonal plant T. repens and potentially under epigenetic control

    Tolerance and resistance of plants to disturbance

    No full text
    As sedentary organisms, plants have to develop many mechanisms to cope with disturbance events, which are common in most habitats, and occur over a range of intensities and frequencies. Some species are able to tolerate disturbance events by rebuilding their lost parts via resprouting from adventitive or axillary buds, and/or resist disturbances by creating various defense mechanisms. This thesis aims to reveal some aspects of tolerance and resistance of herbs to disturbance on the level of plant individuals as well as entire plant communities

    Phenotypic diversity influenced by a transposable element increases productivity and resistance to competitors in plant populations

    No full text
    An accumulating body of evidence indicates that natural plant populations harbour a large diversity of transposable elements (TEs). TEs, which are especially mobilized under genomic and/or environmental stress, provide genetic and epigenetic variation that can substantially translate into a diversity of plant phenotypes within populations. However, it remains unclear what the potential ecological effects of diversity in TEs within an otherwise genetically uniform population are in terms of phenotypic diversity's effects on coexistence and ecosystem functioning. Using Arabidopsis thaliana as a proof-of-concept model, we assembled populations from individuals differing in the number and positions of ONSEN retrotransposon and tested whether the increasing diversity created by the ONSEN retrotransposon increased the phenotypic diversity of populations and enhanced their functioning under different environmental conditions. We demonstrate that TE-generated variation creates differentiation in ecologically important traits connected to different axes of the plant ‘economics’ spectrum. In particular, we show that Arabidopsis populations with increasing diversity of individuals differing in the ONSEN retrotransposon had higher phenotypic and functional diversity in resource use-related traits. Such increased diversity enhanced population productivity and reduced the performance of interspecific competitors. Synthesis. We conclude that TE-generated phenotypic and functional diversity can have similar effects on ecosystems as are usually documented for other biological diversity effects. The results of our experiment open up new fields of investigation, highlighting the ecological relevance of unexplored sources of phenotypic variability and hopefully inspiring functional trait ecologists and evolutionary biologists to begin exploring new questions at the intersection of their fields.This study was financially supported by the Czech Science Foundation (GACR 20-13637S) and the institutional research project RVO 67985939. J.P. was funded by grant FJC2020-042954-I by MCIN/AEI/10.13039/501100011033 & ‘European Union NextGenerationEU/PRTR’ and by the Irish Research Council Laureate Awards 2017/2018 (IRCLA/2017/60) to Yvonne Buckley. E.B. was funded by the ERC Consolidator grant (BUNGEE 725701) of the European Union. F.d.B. was supported by the Plan Nacional de I+D+i (project PGC2018-099027-B-I00), M.T. was financially supported by the University Research Priority Programme (URPP) Evolution in Action and the European Commission (PITN-GA-2013-608422–IDP BRIDGES).Peer reviewe

    Adaptive transgenerational plasticity in the perennial Plantago lanceolata

    No full text
    Phenotypes of plants, and thus their ecology and evolution, can be affected by the environmental conditions experienced by their parents, a phenomenon called parental effects or transgenerational plasticity. However, whether such effects are just passive responses or represent a special type of adaptive plasticity remains controversial because of a lack of solid tests of their adaptive significance. Here, we investigated transgenerational effects of different nutrient environments on the productivity, carbon storage and flowering phenology of the perennial plant Plantago lanceolata, and whether these effects are influenced by seasonal variation in the maternal environment. We found that maternal environments significantly affected the offspring phenotype, and that plants consistently produced more biomass and had greater root carbohydrate storage if grown under the same environmental conditions as experienced by their mothers. The observed transgenerational effects were independent of the season in which seeds had matured. We therefore conclude that transgenerational effects on biomass and carbon storage in P. lanceolata are adaptive regardless of the season of seed maturation
    corecore