144 research outputs found

    Identification and characterization of prokineticin receptor 2 splicing variant and its modulation in an animal model of alzheimer's disease

    Get PDF
    Prokineticin 2 is a peptide that is widely distributed in the nervous system and influences a variety of brain functions, such as pain, food intake and circadian rhythms. We previously demonstrated that, in the animal model of Alzheimer’s disease, induced by the intracerebroventricular administration of Aβ1-42, there is a modulation of the prokineticin system in rat hippocampus. Prokineticin 2 is a able to mediate its signaling through two different G-protein coupled receptors, designated PKR1 and PKR2, belonging to the neuropeptide Y receptor class. These two receptors have different tissue distributions: PKR1 is expressed in diverse peripheral organs with relatively high levels in the small intestines and lung, whereas PKR2 is predominantly expressed in the central nervous system. The PKRs activate multiple intracellular signal-transduction pathways: they are Gαq-coupled receptors and promoting intracellular calcium mobilization but they also couple to Gαi (especially PKR2) and Gαs proteins. In rat hippocampus we identified a mRNA encoding for a PKR2 splice variant, that lacking the second exon, gives rise to a four-transmembrane protein denominated TM 4-7. Expression of this splicing variant in yeast, allowed us to demonstrate that TM 4-7 dimerizes with PKR2 long form and that this heterodimer binds to G protein subtypes with different specificity respect to PKR2 wild-type. Moreover we evidenced that, following Aβ1-42 intracerebroventricular injection in rat, the PKR2 hippocampal levels slightly increased respect to control animals whereas there was a strong up-regulation of the PKR2 splicing variant, TM 4-7. We showed that the increased levels of TM 4-7 determined a modulation of PKR2 signal transduction hindering STAT3 activation

    In vitro and in vivo pharmacological activities of 14-o-phenylpropyloxymorphone, a potent mixed mu/delta/kappa-opioid receptor agonist with reduced constipation in mice

    Get PDF
    Pain, particularly chronic pain, is still an unsolved medical condition. Central goals in pain control are to provide analgesia of adequate efficacy and to reduce complications associated with the currently available drugs. Opioids are the mainstay for the treatment of moderate to severe pain. However, opioid pain medications also cause detrimental side effects, thus highlighting the need of innovative and safer analgesics. Opioids mediate their actions via the activation of opioid receptors, with the mu-opioid receptor as the primary target for analgesia, but also for side effects. One long-standing focus of drug discovery is the pursuit for new opioids exhibiting a favorable dissociation between analgesia and adverse effects. In this study, we describe the in vitro and in vivo pharmacological profiles of the 14-O-phenylpropyl substituted analog of the mu-opioid agonist 14-O-methyloxymorphone (14-OMO). The consequence of the substitution of the 14-O-methyl in 14-OMO with a 14-O-phenylpropyl group on in vitro binding and functional activity, and in vivo behavioral properties (nociception and gastrointestinal motility) was investigated. In binding studies, 14-O-phenylpropyloxymorphone (POMO) displayed very high affinity at mu-, delta-, and kappa-opioid receptors (Ki values in nM, mu:delta:kappa = 0.073:0.13:0.30) in rodent brain membranes, with complete loss of mu-receptor selectivity compared to 14-OMO. In guinea-pig ileum and mouse vas deferens bioassays, POMO was a highly efficacious and full agonist, being more potent than 14-OMO. In the [35S]GTPγS binding assays with membranes from CHO cells expressing human opioid receptors, POMO was a potent mu/delta-receptor full agonist and a kappa-receptor partial agonist. In vivo, POMO was highly effective in acute thermal nociception (hot-plate test, AD50= 0.7 nmol/kg) in mice after subcutaneous administration, with over 70- and 9000-fold increased potency than 14-OMO and morphine, respectively. POMO-induced antinociception is mediated through the activation of the mu-opioid receptor, and it does not involve delta- and kappa-opioid receptors. In the charcoal test, POMO produced fourfold less inhibition of the gastrointestinal transit than 14-OMO and morphine. In summary, POMO emerges as a new potent mixed mu/delta/kappa-opioid receptor agonist with reduced liability to cause constipation at antinociceptive doses

    The role of prokineticin 2 in oxidative stress and in neuropathological processes

    Get PDF
    The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions

    N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans.

    Get PDF
    Emerging research seeking novel analgesic drugs focuses on agents targeting group-II metabotropic glutamate receptors (mGlu2 and mGlu3 receptors). N-Acetylcysteine (NAC) enhances the endogenous activation of mGlu2/3 receptors by activating the glial glutamate:cystine membrane exchanger. Here, we examined whether NAC inhibits nociceptive responses in humans and animals. We tested the effect of oral NAC (1.2 g) on thermal-pain thresholds and laser-evoked potentials in 10 healthy volunteers, according to a crossover, double-blind, placebo-controlled design, and the effect of NAC (100 mg/kg, i.p.) on the tail-flick response evoked by radiant heat stimulation in mice.In healthy subjects, NAC treatment left thermal-pain thresholds unchanged, but significantly reduced pain ratings to laser stimuli and amplitudes of laser-evoked potentials. NAC induced significantly greater changes in these measures than placebo. In the tail-flick test, NAC strongly reduced the nocifensive reflex response to radiant heat. The action of NAC was abolished by the preferential mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.).Our findings show for the first time that NAC inhibits nociceptive transmission in humans, and does the same in mice by activating mGlu2/3 receptors. These data lay the groundwork for investigating the therapeutic potential of NAC in patients with chronic pain

    Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches

    Get PDF
    Although therapeutic use of stem cells (SCs) is already available in some tissues (cornea, blood, and skin), in most organs we are far from reaching the translational goal of regenerative medicine. In the nervous system, due to intrinsic features which make it refractory to regeneration/repair, it is very hard to obtain functionally integrated regenerative outcomes, even starting from its own SCs (the neural stem cells; NSCs). Besides NSCs, mesenchymal stem cells (MSCs) have also been proposed for therapeutic purposes in neurological diseases. Yet, direct (regenerative) and indirect (bystander) effects are often confused, as are MSCs and bone marrow-derived (stromal, osteogenic) stem cells (BMSCs), whose plasticity is actually overestimated (i.e., trans-differentiation along non-mesodermal lineages, including neural fates). In order to better understand failure in the "regenerative" use of SCs for neurological disorders, it could be helpful to understand how NSCs and BMSCs have adapted to their respective organ niches. In this perspective, here the adult osteogenic and neurogenic niches are considered and compared within their in vivo environment

    Antagonism of the prokineticin system prevents and reverses allodynia and inflammation in a mouse model of diabetes

    Get PDF
    Neuropathic pain is a severe diabetes complication and its treatment is not satisfactory. It is associated with neuroinflammation-related events that participate in pain generation and chronicization. Prokineticins are a new family of chemokines that has emerged as critical players in immune system, inflammation and pain. We investigated the role of prokineticins and their receptors as modulators of neuropathic pain and inflammatory responses in experimental diabetes. In streptozotocin-induced-diabetes in mice, the time course expression of prokineticin and its receptors was evaluated in spinal cord and sciatic nerves, and correlated with mechanical allodynia. Spinal cord and sciatic nerve pro- and anti-inflammatory cytokines were measured as protein and mRNA, and spinal cord GluR subunits expression studied. The effect of preventive and therapeutic treatment with the prokineticin receptor antagonist PC1 on behavioural and biochemical parameters was evaluated. Peripheral immune activation was assessed measuring macrophage and T-helper cytokine production. An up-regulation of the Prokineticin system was present in spinal cord and nerves of diabetic mice, and correlated with allodynia. Therapeutic PC1 reversed allodynia while preventive treatment blocked its development. PC1 normalized prokineticin levels and prevented the up-regulation of GluN2B subunits in the spinal cord. The antagonist restored the pro-/anti-inflammatory cytokine balance altered in spinal cord and nerves and also reduced peripheral immune system activation in diabetic mice, decreasing macrophage proinflammatory cytokines and the T-helper 1 phenotype. The prokineticin system contributes to altered sensitivity in diabetic neuropathy and its inhibition blocked both allodynia and inflammatory events underlying disease

    Cytogenetic and molecular characterization of durum wheat chromosome transfers with 1D-associated gluten protein genes and their pyramiding

    Get PDF
    Gluten quality of bread wheat is known to be mainly associated with high- (HMW-GS) and low-(LMW-GS) molecular weight glutenin subunits encoded by Glu-1 (L arm of group-1 chromosomes) and Glu-3 (S arm of group-1 chromosomes) genes, respectively, with the 1D alleles of such genes having the major impact on bread making properties. Transfer of chromosomal segments containing the Glu-D1 and Gli-D1/Glu-D3 loci was successfully achieved in a number of instances resorting to chromosome engineering. Using this strategy, we isolated two 1A-1D recombinant lines, in which the Gli-D1/Glu-D3 genes and the Glu-D1d allele (HMW-GS "5+10") were separately transferred into the 1AS and 1AL arm, respectively, of recipient durum wheat lines (named PS and PL, respectively). Also, a detailed genetic map of both recombinant chromosome arms was developed. Stable PS + PL double-recombinant lines have been obtained as a result of homologous recombination in the 1A portions shared by the two recombinant chromosomes present in PS x PL hybrids. Preliminary quality tests suggest that the Glu-D3 + Glu-D1d combined presence could determine a slight increase of gluten quality parameters over those associated with Glu-D1d alone

    The prokineticin receptor agonist Bv8 decreases IL-10 and IL-4 production in mice splenocytes by activating prokineticin receptor-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bv8, prokineticin-1, or endocrine gland-vascular endothelial growth factor, and prokineticin-2 are recently isolated peptide agonists of two G protein-coupled receptors, prokineticin receptor-1 (PROKR 1) and PROKR 2, and have been described as affecting a number of myeloid cell functions. We evaluated the impact of Bv8 on lymphoid cells by investigating its ability to modulate T cell cytokine balance in mouse.</p> <p>Results</p> <p>The production of T-helper1 cytokines (IL-2, IFN-γ and IL-1β), the T-helper 2 cytokine IL-4, and the anti-inflammatory cytokine IL-10 by mouse splenocytes was evaluated after polyclonal stimulation or immunisation with the keyhole limpet hemocyanin protein antigen by measuring cytokine levels. When added <it>in vitro </it>to Con-A-stimulated splenocytes, Bv8 significantly increased IL-1β and decreased IL-4 and IL-10; IL-2 and IFN-γ were not affected. Similar results were obtained when Bv8 was administered <it>in vivo</it>. In KLH-immunised mice, splenocytes restimulated <it>in vitro </it>with KLH and Bv8 produced significantly smaller amounts of IL-4 and IL-10. KLH-induced IL-10 and IL-4 production was also significantly blunted in animals administered Bv8 <it>in vivo </it>at the time of KLH immunisation or two weeks later. The Bv8-induced effects were lost in mice lacking the PROKR 1 gene, thus indicating that PROKR 1 is the receptor involved in the modulation of cytokines.</p> <p>Conclusion</p> <p>These findings indicate that Bv8/prokineticin-1 is a novel modulator of lymphoid functions, and may be a suitable target for new immunopharmacological strategies.</p

    A rational approach to elucidate human monoamine oxidase molecular selectivity

    Get PDF
    Designing highly selective human monoamine oxidase (hMAO) inhibitors is a challenging goal on the road to a more effective treatment of depression and anxiety (inhibition of hMAO-A isoform) as well as neurodegenerative diseases (inhibition of hMAO-B isoform). To uncover the molecular rationale of hMAOs selectivity, two recently prepared 2H-chromene-2-ones, namely compounds 1 and 2, were herein chosen as molecular probes being highly selective toward hMAO-A and hMAO-B, respectively. We performed molecular dynamics (MD) studies on four different complexes, cross-simulating one at a time the two hMAO-isoforms (dimer embedded in a lipid bilayer) with the two considered probes. Our comparative analysis on the obtained 100 ns trajectories discloses a stable H-bond interaction between 1 and Gln215 as crucial for ligand selectivity toward hMAO-A whereas a water-mediated interaction might explain the observed hMAO-B selectivity of compound 2. Such hypotheses are further supported by binding free energy calculations carried out applying the molecular mechanics generalized Born surface area (MM-GBSA) method and allowing us to evaluate the contribution of each residue to the observed isoform selectivity. Taken as whole, this study represents the first attempt to explain at molecular level hMAO isoform selectivity and a valuable yardstick for better addressing the design of new and highly selective MAO inhibitors
    corecore