14,358 research outputs found

    Analysis of data systems requirements for global crop production forecasting in the 1985 time frame

    Get PDF
    Data systems concepts that would be needed to implement the objective of the global crop production forecasting in an orderly transition from experimental to operational status in the 1985 time frame were examined. Information needs of users were converted into data system requirements, and the influence of these requirements on the formulation of a conceptual data system was analyzed. Any potential problem areas in meeting these data system requirements were identified in an iterative process

    Continuous star cluster formation in the spiral NGC 45

    Full text link
    We determined ages for 52 star clusters with masses < 10^6 solar masses in the low surface brightness spiral galaxy NGC 45. Four of these candidates are old globular clusters located in the bulge. The remaining ones span a large age range. The cluster ages suggest a continuous star/cluster formation history without evidence for bursts, consistent with the galaxy being located in a relatively unperturbed environment in the outskirts of the Sculptor group.Comment: 4 pages, 3 figures. To appear in "Island Universes - Structure and Evolution of Disk Galaxies", Terschelling (Netherlands), July 200

    C32, A Young Star Cluster in IC 1613

    Get PDF
    The Local Group irregular galaxy IC 1613 has remained an enigma for many years because of its apparent lack of star clusters. We report the successful search for clusters among several of the candidate objects identified many years ago on photographic plates. We have used a single HST WFPC2 pointing and a series of images obtained with the WIYN telescope under exceptional seeing conditions, examining a total of 23 of the previously published candidates. All but six of these objects were found to be either asterisms or background galaxies. Five of the six remaining candidates possibly are small, sparse clusters and the sixth, C32, is an obvious cluster. It is a compact, young object, with an age of less than 10 million years and a total absolute magnitude of M_V = -5.78+/-0.16 within a radius of 13 pc.Comment: 5 pages, 5 figures, to be published in the May 2000 issue of the PAS

    First Starbursts at high redshift: Formation of globular clusters

    Full text link
    Numerical simulations of a Milky Way-size galaxy demonstrate that globular clusters with the properties similar to observed can form naturally at z > 3 in the concordance Lambda-CDM cosmology. The clusters in our model form in the strongly baryon-dominated cores of supergiant molecular clouds. The first clusters form at z = 12, while the peak formation appears to be at z = 3-5. The zero-age mass function of globular clusters can be approximated by a power-law dN/dM ~ M^-2, in agreement with observations of young massive star clusters.Comment: 4 pages, proceedings of the "Multi-Wavelength Cosmology" meeting, June 200

    Null Strings in Schwarzschild Spacetime

    Get PDF
    The null string equations of motion and constraints in the Schwarzschild spacetime are given. The solutions are those of the null geodesics of General Relativity appended by a null string constraint in which the "constants of motion" depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical interpretation of the solutions is completely different from the point particle case. In particular, a null string is generally not propagating in a plane through the origin, although each of its individual points is. Some special solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with a constant radial coordinate rr moving vertically from the south pole to the north pole around the photon sphere, is presented. A general discussion of classical null/tensile strings as compared to massless/massive particles is given. For instance, tensile circular solutions with a constant radial coordinate rr do not exist at all. The results are discussed in relation to the previous literature on the subject.Comment: 16 pages, REVTEX, no figure

    Instantaneous Pair Theory for High-Frequency Vibrational Energy Relaxation in Fluids

    Full text link
    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motions in liquids, typically spanning no more than a few hundred cm^{-1}. Landau-Teller-like theories explain how a solvent can absorb any vibrational energy within this "band", but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? We develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate -- and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high frequency relaxation. The many-body features of the liquid only appear in the guise of a purely equilibrium problem, that of finding the likelihood of particularly effective solvent arrangements around the solute. These results are tested numerically on model diatomic solutes dissolved in atomic fluids (including the experimentally and theoretically interesting case of I_2 in Xe). The instantaneous pair theory leads to results in quantitative agreement with those obtained from far more laborious exact molecular dynamics simulations.Comment: 55 pages, 6 figures Scheduled to appear in J. Chem. Phys., Jan, 199

    Structure and Mass of a Young Globular Cluster in NGC 6946

    Get PDF
    Using the Wide Field Planetary Camera 2 on board the Hubble Space Telescope, we have imaged a luminous young star cluster in the nearby spiral galaxy NGC 6946. The cluster has an absolute visual magnitude M(V)=-13.2, comparable to the brightest young `super-star clusters' in the Antennae merger galaxy. UBV colors indicate an age of about 15 Myr. The cluster has a compact core (core radius = 1.3 pc), surrounded by an extended envelope. We estimate that the effective radius (Reff) = 13 pc, but this number is uncertain because the outer parts of the cluster profile gradually merge with the general field. Combined with population synthesis models, the luminosity and age of the cluster imply a mass of 8.2x10^5 Msun for a Salpeter IMF extending down to 0.1 Msun, or 5.5x10^5 Msun if the IMF is log-normal below 0.4 Msun. Depending on model assumptions, the central density of the cluster is between 5300 Msun pc^-3 and 17000 Msun pc^-3, comparable to other high-density star forming regions. We also estimate a dynamical mass for the cluster, using high-dispersion spectra from the HIRES spectrograph on the Keck I telescope. The velocity dispersion is 10.0 +/- 2.7 km/s, implying a total cluster mass within 65 pc of (1.7 +/- 0.9) x 10^6 Msun. Comparing the dynamical mass with the mass estimates based on the photometry and population synthesis models, the mass-to-light ratio is at least as high as for a Salpeter IMF extending down to 0.1 Msun, although a turn-over in the IMF at 0.4 Msun is still possible within the errors. The cluster will presumably remain bound, evolving into a globular cluster-like object.Comment: 33 pages, including 10 figures and 3 tables. Accepted for publication in the Astrophysical Journa

    Non-linear optomechanical measurement of mechanical motion

    Get PDF
    Precision measurement of non-linear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of non-linear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic non-linearity of the radiation pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100~pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications.Comment: 8 pages, 4 figures, extensive supplementary material available with published versio

    Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    Get PDF
    We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing AlfvĂ©n waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∌ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∌3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∌1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase
    • 

    corecore