406 research outputs found

    Mass Spectrum of Strings in Anti de Sitter Spacetime

    Get PDF
    We perform string quantization in anti de Sitter (AdS) spacetime. The string motion is stable, oscillatory in time with real frequencies ωn=n2+m2α2H2\omega_n= \sqrt{n^2+m^2\alpha'^2H^2} and the string size and energy are bounded. The string fluctuations around the center of mass are well behaved. We find the mass formula which is also well behaved in all regimes. There is an {\it infinite} number of states with arbitrarily high mass in AdS (in de Sitter (dS) there is a {\it finite} number of states only). The critical dimension at which the graviton appears is D=25,D=25, as in de Sitter space. A cosmological constant Λ0\Lambda\neq 0 (whatever its sign) introduces a {\it fine structure} effect (splitting of levels) in the mass spectrum at all states beyond the graviton. The high mass spectrum changes drastically with respect to flat Minkowski spacetime. For ΛΛN2,\Lambda\sim \mid\Lambda\mid N^2, {\it independent} of α,\alpha', and the level spacing {\it grows} with the eigenvalue of the number operator, N.N. The density of states ρ(m)\rho(m) grows like \mbox{Exp}[(m/\sqrt{\mid\Lambda\mid}\;)^{1/2}] (instead of \rho(m)\sim\mbox{Exp}[m\sqrt{\alpha'}] as in Minkowski space), thus {\it discarding} the existence of a critical string temperature. For the sake of completeness, we also study the quantum strings in the black string background, where strings behave, in many respects, as in the ordinary black hole backgrounds. The mass spectrum is equal to the mass spectrum in flat Minkowski space.Comment: 31 pages, Latex, DEMIRM-Paris-9404

    Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes

    Get PDF
    We compute the {\it exact} equation of state of circular strings in the (2+1) dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating, contracting and expanding) strings. The string equation of state has the perfect fluid form P=(γ1)E,P=(\gamma-1)E, with the pressure and energy expressed closely and completely in terms of elliptic functions, the instantaneous coefficient γ\gamma depending on the elliptic modulus. We semi-classically quantize the oscillating circular strings. The string mass is m=C/(πHα),  Cm=\sqrt{C}/(\pi H\alpha'),\;C being the Casimir operator, C=LμνLμν,C=-L_{\mu\nu}L^{\mu\nu}, of the O(3,1)O(3,1)-dS [O(2,2)O(2,2)-AdS] group, and HH is the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0), and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large nN0n\in N_0) and N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows with nn in AdS spacetime, while is approximately constant (although larger than in Minkowski spacetime) in dS spacetime. The massive states in dS spacetime decay through tunnel effect and the semi-classical decay probability is computed. The semi-classical quantization of {\it exact} (circular) strings and the canonical quantization of generic string perturbations around the string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from the authors on request. DEMIRM-Obs de Paris-9404

    QFT, String Temperature and the String Phase of De Sitter Space-time

    Get PDF
    The density of mass levels \rho(m) and the critical temperature for strings in de Sitter space-time are found. QFT and string theory in de Sitter space are compared. A `Dual'-transform is introduced which relates classical to quantum string lengths, and more generally, QFT and string domains. Interestingly, the string temperature in De Sitter space turns out to be the Dual transform of the QFT-Hawking-Gibbons temperature. The back reaction problem for strings in de Sitter space is addressed selfconsistently in the framework of the `string analogue' model (or thermodynamical approach), which is well suited to combine QFT and string study.We find de Sitter space-time is a self-consistent solution of the semiclassical Einstein equations in this framework. Two branches for the scalar curvature R(\pm) show up: a classical, low curvature solution (-), and a quantum high curvature solution (+), enterely sustained by the strings. There is a maximal value for the curvature R_{\max} due to the string back reaction. Interestingly, our Dual relation manifests itself in the back reaction solutions: the (-) branch is a classical phase for the geometry with intrinsic temperature given by the QFT-Hawking-Gibbons temperature.The (+) is a stringy phase for the geometry with temperature given by the intrinsic string de Sitter temperature. 2 + 1 dimensions are considered, but conclusions hold generically in D dimensions.Comment: LaTex, 24 pages, no figure

    Sinh-Gordon, Cosh-Gordon and Liouville Equations for Strings and Multi-Strings in Constant Curvature Spacetimes

    Get PDF
    We find that the fundamental quadratic form of classical string propagation in 2+12+1 dimensional constant curvature spacetimes solves the Sinh-Gordon equation, the Cosh-Gordon equation or the Liouville equation. We show that in both de Sitter and anti de Sitter spacetimes (as well as in the 2+12+1 black hole anti de Sitter spacetime), {\it all} three equations must be included to cover the generic string dynamics. The generic properties of the string dynamics are directly extracted from the properties of these three equations and their associated potentials (irrespective of any solution). These results complete and generalize earlier discussions on this topic (until now, only the Sinh-Gordon sector in de Sitter spacetime was known). We also construct new classes of multi-string solutions, in terms of elliptic functions, to all three equations in both de Sitter and anti de Sitter spacetimes. Our results can be straightforwardly generalized to constant curvature spacetimes of arbitrary dimension, by replacing the Sinh-Gordon equation, the Cosh-Gordon equation and the Liouville equation by higher dimensional generalizations.Comment: Latex, 19 pages + 1 figure (not included

    Infinitely Many Strings in De Sitter Spacetime: Expanding and Oscillating Elliptic Function Solutions

    Full text link
    The exact general evolution of circular strings in 2+12+1 dimensional de Sitter spacetime is described closely and completely in terms of elliptic functions. The evolution depends on a constant parameter bb, related to the string energy, and falls into three classes depending on whether b<1/4b<1/4 (oscillatory motion), b=1/4b=1/4 (degenerated, hyperbolic motion) or b>1/4b>1/4 (unbounded motion). The novel feature here is that one single world-sheet generically describes {\it infinitely many} (different and independent) strings. The world-sheet time τ\tau is an infinite-valued function of the string physical time, each branch yields a different string. This has no analogue in flat spacetime. We compute the string energy EE as a function of the string proper size SS, and analyze it for the expanding and oscillating strings. For expanding strings (S˙>0)(\dot{S}>0): E0E\neq 0 even at S=0S=0, EE decreases for small SS and increases S\propto\hspace*{-1mm}S for large SS. For an oscillating string (0SSmax)(0\leq S\leq S_{max}), the average energy over one oscillation period is expressed as a function of SmaxS_{max} as a complete elliptic integral of the third kind.Comment: 32 pages, Latex file, figures available from the authors under request. LPTHE-PAR 93-5

    Recovery of 3D footwear impressions using a range of different techniques.

    Get PDF
    Three-dimensional (plastic) footwear impressions are frequently found at, or in the vicinity of a crime scene, and may provide a valuable form of evidence or intelligence. This paper compares the traditional methods of casting and/or two-dimensional photography with Structure from Motion (SfM) photogrammetry. We focus both on the recovery of class characteristics (sole pattern) and randomly acquired characteristics caused by damage. We examine how different recovery techniques influence visualization of outsole features and discuss what effect this may have on evidential value. Five shoes and their associated three-dimensional impressions made in both sand and soil were compared using a grid system and tread descriptors commonly used in the UK. We conclude that within the limitations of this study SfM photogrammetry allows superior levels of visualization of both class and randomly acquired characteristics, giving a better definition in detail in some instances. The use of SfM as a complementary approach can therefore lead to a potential increase in evidential value

    Open Cosmic Strings in Black Hole Space-Times

    Get PDF
    We construct open cosmic string solutions in Schwarzschild black hole and non-dilatonic black p-brane backgrounds. These strings can be thought to stretch between two D-branes or between a D-brane and the horizon in curved space-time. We study small fluctuations around these solutions and discuss their basic properties.Comment: 11 pages, REVTex, 5 figures, a reference adde

    Open String Fluctuations in AdS with and without Torsion

    Full text link
    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in Anti de Sitter space with and without torsion are investigated in detail. By carefully analyzing the tangential fluctuations at the boundary, we show explicitly that the physical fluctuations (which at the boundary are combinations of normal and tangential fluctuations) are finite, even though the world-sheet is singular there. The divergent 2-curvature thus seems less dangerous than expected, in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/CFT duality, on AdS_5 \times S^5 and AdS_3 \times S^3 \times T^4.Comment: 19 pages, Late

    Spinning Pulsating String Solitons in AdS_5 x S^5

    Full text link
    We point out the existence of some simple string solitons in AdS_5 x S^5, which at the same time are spinning in AdS_5 and pulsating in S^5, or vice-versa. This introduces an additional arbitrary constant into the scaling relations between energy and spin or R-charge. The arbitrary constant is not an angular momentum, but can be related to the amplitude of the pulsation. We discuss the solutions in detail and consider the scaling relations. Pulsating multi spin or multi R-charge solutions can also be constructed.Comment: 15 pages, Late

    Strings in Homogeneous Background Spacetimes

    Full text link
    The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi I and Bianchi IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the recent developments in string cosmology, where it has been shown that, under certain circumstances, such spacetimes appear as string-vacua. Both tensile and null strings are considered. Generally, it is much simpler to solve for the null strings since then we deal with the null geodesic equations of General Relativity plus some additional constraints. We consider in detail an ansatz corresponding to circular strings, and we discuss the possibility of using an elliptic-shape string ansatz in the case of homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE
    corecore