research

Infinitely Many Strings in De Sitter Spacetime: Expanding and Oscillating Elliptic Function Solutions

Abstract

The exact general evolution of circular strings in 2+12+1 dimensional de Sitter spacetime is described closely and completely in terms of elliptic functions. The evolution depends on a constant parameter bb, related to the string energy, and falls into three classes depending on whether b<1/4b<1/4 (oscillatory motion), b=1/4b=1/4 (degenerated, hyperbolic motion) or b>1/4b>1/4 (unbounded motion). The novel feature here is that one single world-sheet generically describes {\it infinitely many} (different and independent) strings. The world-sheet time τ\tau is an infinite-valued function of the string physical time, each branch yields a different string. This has no analogue in flat spacetime. We compute the string energy EE as a function of the string proper size SS, and analyze it for the expanding and oscillating strings. For expanding strings (S˙>0)(\dot{S}>0): E0E\neq 0 even at S=0S=0, EE decreases for small SS and increases S\propto\hspace*{-1mm}S for large SS. For an oscillating string (0SSmax)(0\leq S\leq S_{max}), the average energy over one oscillation period is expressed as a function of SmaxS_{max} as a complete elliptic integral of the third kind.Comment: 32 pages, Latex file, figures available from the authors under request. LPTHE-PAR 93-5

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019