2,455 research outputs found

    Space Charge Limited 2-d Electron Flow between Two Flat Electrodes in a Strong Magnetic Field

    Get PDF
    An approximate analytic solution is constructed for the 2-d space charge limited emission by a cathode surrounded by non emitting conducting ledges of width Lambda. An essentially exact solution (via conformal mapping) of the electrostatic problem in vacuum is matched to the solution of a linearized problem in the space charge region whose boundaries are sharp due to the presence of a strong magnetic field. The current density growth in a narrow interval near the edges of the cathode depends strongly on Lambda. We obtain an empirical formula for the total current as a function of Lambda which extends to more general cathode geometries.Comment: 4 pages, LaTex, e-mail addresses: [email protected], [email protected]

    Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption

    Full text link
    The kinetics of irreversible adsorption of spherical particles onto a flat surface is theoretically studied. Previous models, in which hydrodynamic interactions were disregarded, predicted a power-law behavior t−2/3t^{-2/3} for the time dependence of the coverage of the surface near saturation. Experiments, however, are in agreement with a power-law behavior of the form t−1/2t^{-1/2}. We outline that, when hydrodynamic interactions are considered, the assymptotic behavior is found to be compatible with the experimental results in a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press

    Modes of Growth in Dynamic Systems

    Get PDF
    Regardless of a system's complexity or scale, its growth can be considered to be a spontaneous thermodynamic response to a local convergence of down-gradient material flows. Here it is shown how growth can be constrained to a few distinct modes that depend on the availability of material and energetic resources. These modes include a law of diminishing returns, logistic behavior and, if resources are expanding very rapidly, super-exponential growth. For a case where a system has a resolved sink as well as a source, growth and decay can be characterized in terms of a slightly modified form of the predator-prey equations commonly employed in ecology, where the perturbation formulation of these equations is equivalent to a damped simple harmonic oscillator. Thus, the framework presented here suggests a common theoretical under-pinning for emergent behaviors in the physical and life sciences. Specific examples are described for phenomena as seemingly dissimilar as the development of rain and the evolution of fish stocks.Comment: 16 pages, 6 figures, including appendi

    On the formation/dissolution of equilibrium droplets

    Full text link
    We consider liquid-vapor systems in finite volume V⊂RdV\subset\R^d at parameter values corresponding to phase coexistence and study droplet formation due to a fixed excess δN\delta N of particles above the ambient gas density. We identify a dimensionless parameter Δ∼(δN)(d+1)/d/V\Delta\sim(\delta N)^{(d+1)/d}/V and a \textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the excess is entirely absorbed into the gaseous background. When the droplet first forms, it comprises a non-trivial, \textrm{universal} fraction of excess particles. Similar reasoning applies to generic two-phase systems at phase coexistence including solid/gas--where the ``droplet'' is crystalline--and polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model; to appear in Europhys. Let

    Transport across nanogaps using semiclassically consistent boundary conditions

    Full text link
    Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework and the existence of limiting current investigated. It is shown that the choice of a first order WKB wavefunction as the transmitted wave leads to self consistent boundary conditions and gives results that are significantly different in the non-classical regime from those obtained using a plane transmitted wave. At zero injection energies, the quantum limiting current density, J_c, is found to obey the local scaling law J_c ~ (V_g)^alpha/(D)^{5-2alpha} with the gap separation D and voltage V_g. The exponent alpha > 1.1 with alpha --> 3/2 in the classical regime of small de Broglie wavelengths. These results are consistent with recent experiments using nanogaps most of which are found to be in a parameter regime where classical space charge limited scaling holds away from the emission dominated regime.Comment: 4 pages, 4 ps figure

    Dynamic Scaling of an Adsorption-Diffusion Process on Fractals

    Full text link
    A dynamic scaling of a diffusion process involving the Langmuir type adsorption is studied. We find dynamic scaling functions in one and two dimensions and compare them with direct numerical simulations, and we further study the dynamic scaling law on fractal surfaces. The adsorption-diffusion process obeys the fracton dynamics on the fractal surfaces.Comment: 9 pages, 7 figure

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure

    Chiral and herringbone symmetry breaking in water-surface monolayers

    Get PDF
    We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h

    Properties of Physical Systems: Transient Singularities on Borders and Surface Transitive Zones

    Full text link
    Certain alternative properties of physical systems are describable by supports of arguments of response functions (e.g. light cone, borders of media) and expressed by projectors; corresponding equations of restraints lead to dispersion relations, theorems of counting, etc. As supports are measurable, their absolutely strict borders contradict the spirit of quantum theory and their quantum evolution leading to appearance of subtractions or certain needed flattening would be considered. Flattening of projectors introduce transitive zones that can be examined as a specification of adiabatic hypothesis or the Bogoliubov regulatory function in QED. For demonstration of their possibilities the phenomena of refraction and reflection of electromagnetic wave are considered; they show, in particular, the inevitable appearing of double electromagnetic layers on all surfaces that formerly were repeatedly postulated, etc. Quantum dynamics of projectors proves the neediness of subtractions that usually are artificially adding and express transient singularities and zones in squeezed forms.Comment: 12 p

    The Stern-Gerlach Experiment Revisited

    Full text link
    The Stern-Gerlach-Experiment (SGE) of 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on today's knowledge we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angular momentum quantization in the quantum world and thus also for the existence of directional quantization of all angular momenta in the process of measurement. It measured for the first time a ground state property of an atom, it produced for the first time a `spin-polarized' atomic beam, it almost revealed the electron spin. The SGE was the first fully successful molecular beam experiment with high momentum-resolution by beam measurements in vacuum. This technique provided a new kinematic microscope with which inner atomic or nuclear properties could be investigated. The original SGE is described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to understand directional quantization in the SGE. Heisenberg's and Einstein's proposals of an improved multi-stage SGE are presented. The first realization of these proposals by Stern, Phipps, Frisch and Segr\`e is described. The set-up suggested by Einstein can be considered an anticipation of a Rabi-apparatus. Recent theoretical work is mentioned in which the directional quantization process and possible interference effects of the two different spin states are investigated. In full agreement with the results of the new quantum theory directional quantization appears as a general and universal feature of quantum measurements. One experimental example for such directional quantization in scattering processes is shown. Last not least, the early history of the `almost' discovery of the electron spin in the SGE is revisited.Comment: 50pp, 17 fig
    • …
    corecore