4,291 research outputs found
Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal
To elucidate the relationship between a crystal's structure, its thermal
conductivity, and its phonon dispersion characteristics, an analysis is
conducted on layered diatomic Lennard-Jones crystals with various mass ratios.
Lattice dynamics theory and molecular dynamics simulations are used to predict
the phonon dispersion curves and the thermal conductivity. The layered
structure generates directionally dependent thermal conductivities lower than
those predicted by density trends alone. The dispersion characteristics are
quantified using a set of novel band diagram metrics, which are used to assess
the contributions of acoustic phonons and optical phonons to the thermal
conductivity. The thermal conductivity increases as the extent of the acoustic
modes increases, and decreases as the extent of the stop bands increases. The
sensitivity of the thermal conductivity to the band diagram metrics is highest
at low temperatures, where there is less anharmonic scattering, indicating that
dispersion plays a more prominent role in thermal transport in that regime. We
propose that the dispersion metrics (i) provide an indirect measure of the
relative contributions of dispersion and anharmonic scattering to the thermal
transport, and (ii) uncouple the standard thermal conductivity
structure-property relation to that of structure-dispersion and
dispersion-property relations, providing opportunities for better understanding
of the underlying physical mechanisms and a potential tool for material design.Comment: 30 pages, 10 figure
Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation
We present the results of work involving a statistically complete sample of
34 galaxy clusters, in the redshift range 0.15z0.3 observed with
. We investigate the luminosity-mass () relation for the cluster
sample, with the masses obtained via a full hydrostatic mass analysis. We
utilise a method to fully account for selection biases when modeling the
relation, and find that the relation is significantly different than the
relation modelled when not account for selection effects. We find that the
luminosity of our clusters is 2.20.4 times higher (when accounting for
selection effects) than the average for a given mass, its mass is 30% lower
than the population average for a given luminosity. Equivalently, using the
relation measured from this sample without correcting for selection biases
would lead to the underestimation by 40% of the average mass of a cluster with
a given luminosity. Comparing the hydrostatic masses to mass estimates
determined from the parameter, we find that they are entirely
consistent, irrespective of the dynamical state of the cluster.Comment: 31 pages, 43 figures, accepted for publication in MNRA
Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor
Pebble-bed nuclear reactor technology, which is currently being revived
around the world, raises fundamental questions about dense granular flow in
silos. A typical reactor core is composed of graphite fuel pebbles, which drain
very slowly in a continuous refueling process. Pebble flow is poorly understood
and not easily accessible to experiments, and yet it has a major impact on
reactor physics. To address this problem, we perform full-scale,
discrete-element simulations in realistic geometries, with up to 440,000
frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel
of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60
degrees. We also simulate a bidisperse core with a dynamic central column of
smaller graphite moderator pebbles and show that little mixing occurs down to a
1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local
ordering and porosity (from Voronoi volumes), the residence-time distribution,
and the effects of wall friction and discuss implications for reactor design
and the basic physics of granular flow.Comment: 18 pages, 21 figure
A two-species continuum model for aeolian sand ripples
We formulate a continuum model for aeolian sand ripples consisting of two
species of grains: a lower layer of relatively immobile clusters, with an upper
layer of highly mobile grains moving on top. We predict analytically the ripple
wavelength, initial ripple growth rate and threshold saltation flux for ripple
formation. Numerical simulations show the evolution of realistic ripple
profiles from initial surface roughness via ripple growth and merger.Comment: 9 pages, 3 figure
Phonon Transport Across a Vacuum Gap
Phonon transport across a silicon/vacuum-gap/silicon structure is modeled using lattice dynamics calculations and Landauer theory. The phonons transmit thermal energy across the vacuum gap via atomic interactions between the leads. Because the incident phonons do not encounter a classically impenetrable potential barrier, this mechanism is not a tunneling phenomenon. While some incident phonons transmit across the vacuum gap and remain in their original mode, many are annihilated and excite different modes. We show that the heat flux due to phonon transport can be 4 orders of magnitude larger than that due to photon transport predicted from near-field radiation theory
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
In vitro demonstration of intestinal absorption mechanisms of different sugars using 3d organotypic tissues in a fluidic device
Intestinal permeability is crucial in regulating the bioavailability and, consequently, the biological effects of drugs and compounds. However, systematic and quantitative studies of the absorption of molecules are quite limited due to a lack of reliable experimental models able to mimic human in vivo responses. In this work, we present an in vitro perfused model of the small intestinal barrier using a 3D reconstructed intestinal epithelium integrated into a fluid-dynamic bioreactor (MIVO\uae) resembling the physiological stimuli of the intestinal environment. This platform was investigated in both healthy and induced pathological conditions by monitoring the absorption of two non-metabolized sugars, lactulose and mannitol, frequently used as indicators of intestinal barrier dysfunctions. In healthy conditions, an in vivo-like plateau of the percentage of absorbed sugars was reached, where mannitol absorption was much greater than lactulose absorption. Moreover, a model of pathologically altered intestinal permeability was generated by depleting extracellular Ca2+ using a calcium-specific chelator. After calcium depletion, the pattern of sugar passage observed under pathological conditions was reversed only in dynamic conditions in the MIVO\uae chamber, due to the dynamic fluid flow beneath the membrane, but not in static conditions. Therefore, the combination of the MIVO\uae with the EpiIntestinal\u2122 platform can represent a reliable in vitro model to study the passage of molecules across the healthy or pathological small intestinal barrier by discriminating the two main mechanisms of intestinal absorption
- …