82 research outputs found
The Stern-Gerlach Experiment Revisited
The Stern-Gerlach-Experiment (SGE) of 1922 is a seminal benchmark experiment
of quantum physics providing evidence for several fundamental properties of
quantum systems. Based on today's knowledge we illustrate the different
benchmark results of the SGE for the development of modern quantum physics and
chemistry.
The SGE provided the first direct experimental evidence for angular momentum
quantization in the quantum world and thus also for the existence of
directional quantization of all angular momenta in the process of measurement.
It measured for the first time a ground state property of an atom, it produced
for the first time a `spin-polarized' atomic beam, it almost revealed the
electron spin. The SGE was the first fully successful molecular beam experiment
with high momentum-resolution by beam measurements in vacuum. This technique
provided a new kinematic microscope with which inner atomic or nuclear
properties could be investigated.
The original SGE is described together with early attempts by Einstein,
Ehrenfest, Heisenberg, and others to understand directional quantization in the
SGE. Heisenberg's and Einstein's proposals of an improved multi-stage SGE are
presented. The first realization of these proposals by Stern, Phipps, Frisch
and Segr\`e is described. The set-up suggested by Einstein can be considered an
anticipation of a Rabi-apparatus. Recent theoretical work is mentioned in which
the directional quantization process and possible interference effects of the
two different spin states are investigated.
In full agreement with the results of the new quantum theory directional
quantization appears as a general and universal feature of quantum
measurements. One experimental example for such directional quantization in
scattering processes is shown. Last not least, the early history of the
`almost' discovery of the electron spin in the SGE is revisited.Comment: 50pp, 17 fig
Explanation of the Gibbs paradox within the framework of quantum thermodynamics
The issue of the Gibbs paradox is that when considering mixing of two gases
within classical thermodynamics, the entropy of mixing appears to be a
discontinuous function of the difference between the gases: it is finite for
whatever small difference, but vanishes for identical gases. The resolution
offered in the literature, with help of quantum mixing entropy, was later shown
to be unsatisfactory precisely where it sought to resolve the paradox.
Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining
the paradox, since it does not deal explicitly with the difference between the
gases. The proper approach employs quantum thermodynamics, which deals with
finite quantum systems coupled to a large bath and a macroscopic work source.
Within quantum thermodynamics, entropy generally looses its dominant place and
the target of the paradox is naturally shifted to the decrease of the maximally
available work before and after mixing (mixing ergotropy). In contrast to
entropy this is an unambiguous quantity. For almost identical gases the mixing
ergotropy continuously goes to zero, thus resolving the paradox. In this
approach the concept of ``difference between the gases'' gets a clear
operational meaning related to the possibilities of controlling the involved
quantum states. Difficulties which prevent resolutions of the paradox in its
entropic formulation do not arise here. The mixing ergotropy has several
counter-intuitive features. It can increase when less precise operations are
allowed. In the quantum situation (in contrast to the classical one) the mixing
ergotropy can also increase when decreasing the degree of mixing between the
gases, or when decreasing their distinguishability. These points go against a
direct association of physical irreversibility with lack of information.Comment: Published version. New title. 17 pages Revte
Contribution to understanding the mathematical structure of quantum mechanics
Probabilistic description of results of measurements and its consequences for
understanding quantum mechanics are discussed. It is shown that the basic
mathematical structure of quantum mechanics like the probability amplitudes,
Born rule, commutation and uncertainty relations, probability density current,
momentum operator, rules for including the scalar and vector potentials and
antiparticles can be obtained from the probabilistic description of results of
measurement of the space coordinates and time. Equations of motion of quantum
mechanics, the Klein-Gordon equation, Schrodinger equation and Dirac equation
are obtained from the requirement of the relativistic invariance of the
space-time Fisher information. The limit case of the delta-like probability
densities leads to the Hamilton-Jacobi equation of classical mechanics. Many
particle systems and the postulates of quantum mechanics are also discussed.Comment: 21 page
QUBIC: The QU Bolometric Interferometer for Cosmology
One of the major challenges of modern cosmology is the detection of B-mode
polarization anisotropies in the CMB. These originate from tensor fluctuations
of the metric produced during the inflationary phase. Their detection would
therefore constitute a major step towards understanding the primordial
Universe. The expected level of these anisotropies is however so small that it
requires a new generation of instruments with high sensitivity and extremely
good control of systematic effects. We propose the QUBIC instrument based on
the novel concept of bolometric interferometry, bringing together the
sensitivity advantages of bolometric detectors with the systematics effects
advantages of interferometry. Methods: The instrument will directly observe the
sky through an array of entry horns whose signals will be combined together
using an optical combiner. The whole set-up is located inside a cryostat.
Polarization modulation will be achieved using a rotating half-wave plate and
interference fringes will be imaged on two focal planes (separated by a
polarizing grid) tiled with bolometers. We show that QUBIC can be considered as
a synthetic imager, exactly similar to a usual imager but with a synthesized
beam formed by the array of entry horns. Scanning the sky provides an
additional modulation of the signal and improve the sky coverage shape. The
usual techniques of map-making and power spectrum estimation can then be
applied. We show that the sensitivity of such an instrument is comparable with
that of an imager with the same number of horns. We anticipate a low level of
beam-related systematics thanks to the fact that the synthesized beam is
determined by the location of the primary horns. Other systematics should be
under good control thanks to an autocalibration technique, specific to our
concept, that will permit the accurate determination of most of the systematics
parameters.Comment: 12 pages, 10 figures, submitted to Astronomy and Astrophysic
Locality for quantum systems on graphs depends on the number field
Adapting a definition of Aaronson and Ambainis [Theory Comput. 1 (2005),
47--79], we call a quantum dynamics on a digraph "saturated Z-local" if the
nonzero transition amplitudes specifying the unitary evolution are in exact
correspondence with the directed edges (including loops) of the digraph. This
idea appears recurrently in a variety of contexts including angular momentum,
quantum chaos, and combinatorial matrix theory. Complete characterization of
the digraph properties that allow such a process to exist is a long-standing
open question that can also be formulated in terms of minimum rank problems. We
prove that saturated Z-local dynamics involving complex amplitudes occur on a
proper superset of the digraphs that allow restriction to the real numbers or,
even further, the rationals. Consequently, among these fields, complex numbers
guarantee the largest possible choice of topologies supporting a discrete
quantum evolution. A similar construction separates complex numbers from the
skew field of quaternions. The result proposes a concrete ground for
distinguishing between complex and quaternionic quantum mechanics.Comment: 9 page
QUBIC: the Q&U Bolometric Interferometer for Cosmology
The primordial B-mode polarisation of the Cosmic Microwave Background is the imprints of the gravitational wave background generated by inflation. Observing the B-mode is up to now the most direct way to constrain the physics of the primordial Universe, especially inflation. To detect these B-modes, high sensitivity is required as well as an exquisite control of systematics effects. To comply with these requirements, we propose a new instrument called QUBIC (Q and U Bolometric Interferometer for Cosmology) based on bolometric interferometry. The control of systematics is obtained with a close-packed interferometer while bolometers cooled to very low temperature allow for high sensitivity. We present the architecture of this new instrument, the status of the project and the self-calibration technique which allows accurate measurement of the instrumental systematic effects
QUBIC: The QU Bolometric Interferometer for Cosmology
Context. One of the major challenges of modern cosmology is the detection of B-mode polarization anisotropies in the Cosmic
Microwave Background. These originate from tensor fluctuations of the metric produced during the inflationary phase. Their detection
would therefore constitute a major step towards understanding the primordial Universe. The expected level of these anisotropies is
however so small that it requires a new generation of instruments with high sensitivity and extremely good control of systematic
eects.
Aims. We propose the QUBIC instrument based on the novel concept of bolometric interferometry, bringing together the sensitivity
advantages of bolometric detectors with the systematics eects advantages of interferometry.
Methods. The instrument will directly observe the sky through an array of entry horns whose signals will be combined together
using an optical combiner. The whole set-up is located inside a cryostat. Polarization modulation will be achieved using a rotating
half-wave plate and the images of the interference fringes will be formed on two focal planes (separated by a polarizing grid) tiled
with bolometers.
Results.We show that QUBIC can be considered as a synthetic imager, exactly similar to a usual imager but with a synthesized beam
formed by the array of entry horns. Scanning the sky provides an additional modulation of the signal and improve the sky coverage
shape. The usual techniques of map-making and power spectrum estimation can then be applied. We show that the sensitivity of
such an instrument is comparable with that of an imager with the same number of horns. We anticipate a low level of beam-related
systematics thanks to the fact that the synthesized beam is determined by the location of the primary horns. Other systematics should
be under good control thanks to an autocalibration technique, specific to our concept, that will permit the accurate determination of
most of the systematics parameters
The historical origins of corruption in the developing world: a comparative analysis of East Asia
A new approach has emerged in the literature on corruption in the developing world that breaks with the assumption that corruption is driven by individualistic self-interest and, instead, conceptualizes corruption as an informal system of norms and practices. While this emerging neo-institutionalist approach has done much to further our understanding of corruption in the developing world, one key question has received relatively little attention: how do we explain differences in the institutionalization of corruption between developing countries? The paper here addresses this question through a systematic comparison of seven developing and newly industrialized countries in East Asia. The argument that emerges through this analysis is that historical sequencing mattered: countries in which the "political marketplace" had gone through a process of concentration before universal suffrage was introduced are now marked by less harmful types of corruption than countries where mass voting rights where rolled out in a context of fragmented political marketplaces. The paper concludes by demonstrating that this argument can be generalized to the developing world as a whole
Clientelism and corruption: Institutional adaptation of state capture strategies in view of resource scarcity in Greece
How do strategies of state capture adapt to tight fiscal conditions? The article uses a historical institutionalist approach and content analysis to study the case of Greece. Three theoretically relevant patterns of institutional adaptation are unearthed: first, limited resources for state capture do indeed trigger self-limitation initiatives as expected, but these initiatives replace costly benefits with less costly ones. Second, different forms of capture have different implications for the terms of political competition. Third, there is a mutually reinforcing relationship between clientelism and corruption, which becomes pronounced in the creative ways by which strategies of capture adjust to shifting opportunities and constraints. Clients are appointed in state offices and extract bribes directly from citizens. âClient corruptionâ replaces extraction from the state with extraction through the state, which is less costly for the public finances: the benefit the governing party gives to its clients is the ârightâ to extract rents for themselves
- âŠ