240 research outputs found
Velocity measurements in a cavitating micro-channel flow
International audienc
Adult Human Keratinocytes Migrating over Nonviable Dermal Collagen Produce Collagenolytic Enzymes That Degrade Type I and Type IV Collagen
Human adult keratinocytes migrating on a nonviable dermal substrate in cultures without fibroblasts induce thinning and degradation of the collagen substrate beneath the migrating epithelium. Further, unconcentrated conditioned medium from the cultures exhibit collagenolytic activity against both type I and type IV collagen which is inhibited by EDTA but not by phenylmethylsulfonyl fluoride or N-ethylmaleimide. Since the migrating epithelium and dermal substrate do not contain fibroblasts, this study shows that migratory keratinocytes in contact with interstitial collagen are capable of producing collagenases against type I and type IV collagen. Moreover, migratory keratinocytes appear to be similar to highly metastatic cells in their ability to degrade basement membrane collagen
Optical investigation of a cavitating flow in a 2D nozzle
International audienceIn heat engines (vehicle), cavitation plays an important role in fuel atomization mechanisms. The physics of cavitation as well as its impact on spray formation and injector efficiency are not well documented yet. Experimental investigations are required. The complexity of modern injectors and the extreme conditions of injection do not facilitate experimental investigations. In this paper, experiments are conducted in a simplified geometry. The model nozzle consists of a transparent 2D micro-channel supplied with a test-oil (ISO 4113). Velocity fields are obtained by means of a shadowgraph-like imaging arrangement using PIV components (double pulsed laser and double-frame camera). Pressure fields are obtained by interferometry coupled with a Schlieren technique
Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model
As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA)
mission, the near-Earth binary asteroid 65803 Didymos represents a special
class of binary asteroids, those whose primaries are at risk of rotational
disruption. To gain a better understanding of these binary systems and to
support the AIDA mission, this paper investigates the creep stability of the
Didymos primary by representing it as a cohesionless self-gravitating granular
aggregate subject to rotational acceleration. To achieve this goal, a
soft-sphere discrete element model (SSDEM) capable of simulating granular
systems in quasi-static states is implemented and a quasi-static spin-up
procedure is carried out. We devise three critical spin limits for the
simulated aggregates to indicate their critical states triggered by reshaping
and surface shedding, internal structural deformation, and shear failure,
respectively. The failure condition and mode, and shear strength of an
aggregate can all be inferred from the three critical spin limits. The effects
of arrangement and size distribution of constituent particles, bulk density,
spin-up path, and interparticle friction are numerically explored. The results
show that the shear strength of a spinning self-gravitating aggregate depends
strongly on both its internal configuration and material parameters, while its
failure mode and mechanism are mainly affected by its internal configuration.
Additionally, this study provides some constraints on the possible physical
properties of the Didymos primary based on observational data and proposes a
plausible formation mechanism for this binary system. With a bulk density
consistent with observational uncertainty and close to the maximum density
allowed for the asteroid, the Didymos primary in certain configurations can
remain geo-statically stable without including cohesion.Comment: 66 pages, 24 figures, submitted to Icarus on 25/Aug/201
Développement de méthodes instrumentales en vue de l'étude Lagrangienne de l'évaporation dans une turbulence homogène isotrope
Cette thèse est centrée sur le développement d outils expérimentaux permettant de mieux caractériser l étude du couplage entre l évaporation de gouttelettes et un écoulement turbulent gazeux environnant. Dans notre étude on cherche à se placer dans un régime de couplage fort entre les gouttelettes évaporantes et la turbulence. Dans ce régime peu renseigné dans la littérature, les gouttelettes se trouvent dans un régime intermédiaire entre le régime de traceur et le régime inertiel. Dans un premier temps nous présentons un dispositif expérimental capable de générer une turbulence homogène isotrope avec de fortes fluctuations de vitesse, ainsi que la réalisation de l injection de gouttelettes initialement monodisperses. Puis, l instrumentation Lagrangienne développée (en collaboration avec le laboratoire Hubert Curien de St Etienne) : l holographie numérique en ligne, est ensuite testée et validée pour un fluide non évaporant. Une méthode de tracking des gouttelettes a été mise au point afin de reconstruire les trajectoires des gouttelettes dans le volume turbulent homogène isotrope. La précision obtenue sur les diamètres (2% pour des gouttes de 60 m) vient complètement valider cette métrologie pour l étude de l évaporation. Les premiers résultats obtenus avec des gouttelettes évaporantes de fréon R114 font apparaître la visualisation, à notre connaissance inédite, des sillages évaporants. Une première reconstruction de trajectoire avec l évolution du diamètre de la goutte au cours du temps est enfin présentée.This experimental thesis is based on the developpement of experimental tools in order to better understand the coupling between evaporation process and turbulent flow. Our studies focuses on evaporating droplets with strong interaction with turbulent flow, i.e. droplets between fluid particles behaviour and inertial behaviour. This pecular situation is hardly studied regarding to scientific litterature. We first present experimental set up generating homogeneous isotropic turbulence with high Reynolds number and strong fluctuations. Then we present injection process of initially monodisperse droplets in the turbulent flow. Lagrangian instrumentation consists of the use of digital in-line holography (in collaboration with Laboratoire Hubert Curien à St Etienne). This metrology is definitely validated regarding to the accuracy on the droplet diameter measurements. Tracking algorithm is then proposed in order to reconstruct Lagrangian droplet trajectories. First results obtained with evaporating droplets are finally presented like evaporating trails, and time evolution of the diameter of a freon droplet.LYON-Ecole Centrale (690812301) / SudocSudocFranceF
MESURES LAGRANGIENNES DE GOUTTES ÉVAPORANTES DANS UNE TURBULENCE HOMOGÈNE ISOTROPE PAR HOLOGRAPHIE NUMÉRIQUE
International audienceWe present an optical technique capable of measuring 3D trajectories and size evolution of a dilute flow of droplets dispersing in a high Reynolds number turbulence, from a Lagrangian point of view. The technique used is an in-line digital holographic set-up, with an original reconstruction algorithm based on an inverse-problem approach. The experiment has been performed with water and freon droplets in a locally well defined homogeneous, nearly isotropic, turbulence. This technique allows to visualise the thermal wakes behind the droplets which are tracked
Testing an in-line digital holography 'inverse method' for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence
International audienceAn in-line digital holography technique is tested, the objective being to measure Lagrangian three-dimensional (3D) trajectories and the size evolution of droplets evaporating in high-Reλ strong turbulence. The experiment is performed in homogeneous, nearly isotropic turbulence (50 × 50 × 50 mm3) created by the meeting of six synthetic jets. The holograms of droplets are recorded with a single high-speed camera at frame rates of 1-3 kHz. While hologram time series are generally processed using a classical approach based on the Fresnel transform, we follow an 'inverse problem' approach leading to improved size and 3D position accuracy and both in-field and out-of-field detection. The reconstruction method is validated with 60 μm diameter water droplets released from a piezoelectric injector 'on-demand' and which do not appreciably evaporate in the sample volume. Lagrangian statistics on 1000 reconstructed tracks are presented. Although improved, uncertainty on the depth positions remains higher, as expected in in-line digital holography. An additional filter is used to reduce the effect of this uncertainty when calculating the droplet velocities and accelerations along this direction. The diameters measured along the trajectories remain constant within ±1.6%, thus indicating that accuracy on size is high enough for evaporation studies. The method is then tested with R114 freon droplets at an early stage of evaporation. The striking feature is the presence on each hologram of a thermal wake image, aligned with the relative velocity fluctuations 'seen' by the droplets (visualization of the Lagrangian fluid motion about the droplet). Its orientation compares rather well with that calculated by using a dynamical equation for describing the droplet motion. A decrease of size due to evaporation is measured for the droplet that remains longest in the turbulence domain
Cavitation dans un micro-canal modèle d'injecteur diesel (méthodes de visualisation et influence de l'état de surface)
Ce travail de thèse repose sur l élaboration et l exploitation d un banc expérimental dédié à l étude d un écoulement cavitant dans un micro-canal, pour des conditions proches de celles de l injection diesel. Ce banc a été développé dans le but de faire varier différents paramètres, notamment l état de surface des parois du canal. Plusieurs méthodes optiques (imagerie en transmission, strioscopie et interférométrie) ont été mises en place afin de visualiser l écoulementet d en extraire des informations quantitatives. Les images en transmission permettent de visualiser la formation de vapeur dans le canal. Elles sont sensibles au gradient de masse volumique et font ainsi apparaître des couches de cisaillement, des structures turbulentes et des ondes de pression. Leur interprétation est rendue délicate par cette richesse en information et nécessite de recourir aux autres techniques optiques. Il ressort de ce travail que la cavitation se forme dans la couche de cisaillement, sous l effet combiné de la dépression engendrée par le décollement à l entrée du canal et de tourbillons générés par des instabilités dans la couche de cisaillement. La confrontation des résultats obtenus à l aide des différentes techniques optiques, notamment les champs de pression reconstruits à partir des interférogrammes, montre que la zone de formation de la cavitation ne correspond pas à la zone de minimum de pression moyenne de l écoulement. Il apparaît aussi que certaines bulles de vapeur ont une durée de vie bien supérieure à ce que prévoient les modèles de dynamique de bulles. On suspecte que des fluctuations de pression de l ordre de 20 bar, associées à la turbulence, contribuent à la prolongation de ces temps de vie. Un algorithme de PIV, appliqué à des couples d images en transmission, permet de montrer une augmentation importante des fluctuations de vitesse en sortie de canal lorsque les poches de vapeur se développent. Cette augmentation devient plus significative quand les poches atteignent60% de la longueur du canal. L écoulement cavitant est essentiellement piloté par le nombre de cavitation K. Les conditions d apparition et de développement de la cavitation ont été quantifiées dans différents canaux, en faisant varier des paramètres géométriques, la pression amont ou la température. L influence de la hauteur du canal et du rayon de courbure à l entrée de l orifice est conforme aux données de la littérature. Une dépendance du nombre de cavitation critique Kcrit à l apparition de la cavitation au nombre de Reynolds Re est montrée. Enfin, l influence de l état de surface des parois a fait l objet d une étude spécifique. Cette partie du travail demande probablement à être complétée mais l état de surface semble avoir une influence sur la cavitation. D après les cas étudiés au cours de cette thèse, une surface rugueuse ou texturée avec des motifs suffisamment espacés peut retarder l apparition de la cavitation et une rugosité limitée (jusqu à Ra = 0,7 mici) peut favoriser le développement des poches de vapeur.This PhD study is based on the design and use of an experimental set-up dedicated to the study of a cavitating flow in a micro-channel in conditions close to Diesel injection. The experimental set-up has been designed so that different parameters may vary, in particular channel wall roughness. Several optical systems (backlit imaging, Schlieren imaging and interferometry) have been developed in order to visualize the flow and get quantitative data.Backlit images make it possible to visualize vapor formation in the channel. They are sensitive to density gradients and therefore show shear layers, turbulent structures as well as pressure waves. Since they are rich in information, it is tricky to interpret them and the use of other optical methods is required.This study shows that cavitation appears in the shear layer due to the combined effect of the depression induced by flow detachment at the channel inlet and vortexes caused by instabilities in the shear layer. The comparison of the results obtained from the different optical systems in particular the pressure fields rebuilt from interferograms indicates that cavitation does not appear where flow pressure is the lowest in average.It is noticed that some vapor bubbles have a life expectancy much higher than predicted by bubble dynamics models. It is thought that pressure variations of about 20 bar, associated to turbulence, may play a role in this phenomenon.A PIV algorithm applied to couples of backlit images shows that velocity fluctuations largely increase at the channel outlet when vapor cavities develop. The increase gets more significant when cavities are 60 % the channel length.The cavitating flow is mainly dependent on the cavitation number K. The conditions of cavitation inception and development have been quantified in different channels, and geometrical parameters, upstream pressure or temperature have varied. The influence of channel height and radius inlet on cavitation is in line with the literature. At cavitation inception, it is shown that the critical cavitation number Kcrit is dependent on Reynolds number Re. Finally, the influence of wall roughness has been the subject of a specific study. Although it would need to be further investigated, roughness seems to have an influence on cavitation. The samples used during this PhD work suggest that roughness or patterns sufficiently spaced out may delay cavitation inception, and limited roughness (up to Ra = 0.7 m here) may enhance vapor cavity development.LYON-Ecole Centrale (690812301) / SudocSudocFranceF
Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact
Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA
Double Asteroid Redirection Test (DART), part of the Asteroid Impact &
Deflection Assessment (AIDA) mission concept. In this mission, the DART
spacecraft is planned to impact the secondary body of Didymos, perturbing
mutual dynamics of the system. The primary body is currently rotating at a spin
period close to the spin barrier of asteroids, and materials ejected from the
secondary due to the DART impact are likely to reach the primary. These
conditions may cause the primary to reshape, due to landslides, or internal
deformation, changing the permanent gravity field. Here, we propose that if
shape deformation of the primary occurs, the mutual orbit of the system would
be perturbed due to a change in the gravity field. We use a numerical
simulation technique based on the full two-body problem to investigate the
shape effect on the mutual dynamics in Didymos after the DART impact. The
results show that under constant volume, shape deformation induces strong
perturbation in the mutual motion. We find that the deformation process always
causes the orbital period of the system to become shorter. If surface layers
with a thickness greater than ~0.4 m on the poles of the primary move down to
the equatorial region due to the DART impact, a change in the orbital period of
the system and in the spin period of the primary will be detected by
ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA
- …