1,240 research outputs found

    Balloon tank skin strain measurements at liquid-hydrogen temperature on centaur flight vehicle

    Get PDF
    Balloon tank skin strain measurements at liquid hydrogen temperature on Centaur flight vehicl

    Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary

    Get PDF
    Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are finalized. Future funded work will quantify the influences of sea level rise and flood adaptation plans (e.g. surge barriers). It would also be valuable to examine how streamflows from tropical cyclones and wet cool-season storms will change, as this factor will dominate at upriver locations

    Development of Mountain Climate Generator and Snowpack Model for Erosion Predictions in the Western United States Using WEPP: Phase IV

    Get PDF
    Executive Summary: Introduction: This report summarizes work conducted during the funding period (December 1, 1991 through September 30, 1992) of a Research Joint Venture Agreement between the Intermountain Research Station, Forest Service, U. S. Department of Agriculture and the Utah Water Research Laboratory (UWRL), Utah State University (USU). The purpose of the agreement is to develop a Western Mountain Cilmate Generator (MCLIGEN) similar in function to the existing (non-orographic area) Climate Generator (CLIGEN), which is part of the Water Erosion Prediciton Project (WEPP) procedure. Aso, we are developing a Western U.S. Snowpack Simulation Model for includsion in WEPP. In the western U.S., topographic influences on climate make the climate too variable to be captured by one representatbie station per 100 km, as is done in CLIGEN. Also, few meteorological observations exist in high-elevation areas where Forest Service properties are located. Therefore, a procedure for estimating climatological variables in mountainous areas is needed to apply WEPP in these regions. A physically based approach, using an expanded and improved orographic precipitation model, is being utilized. It will use radiosonde lightning data to estimate historical weather sequences. Climatological sequences estimated at ungaged locations will be represented using stochastic models, similar to the approach used in the existing CLIGEN. By using these stochastic models, WEPP users will be able to synthesize climate sequences for input to WEPP. MCLIGEN will depend on historically based, physically interpolated weather sequences from a mesoscale-climate modeling system which is comprised of four nested layers: 1. an existing synoptic scale forecast model (200 x 300 km) 2. a regional scale slimate model (60 x60 km) 3. a local scale climate model (10 x 10 km); and 4. a specific point climate predictor, referred to as ZOOM. Two additional MCLIGEN components are: 5. a local scalses stochastic climate generator; and 6. a point energy balance snowmelt model Progress made during the reporting period in developing the physically based interpolation climate modeling system stochastic models, and snowpack models is summareized below

    Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tsetse flies (Diptera: Glossinidae) are vectors of trypanosomes that cause sleeping sickness in humans and nagana in livestock across sub-Saharan Africa. Tsetse control strategies rely on a detailed understanding of the epidemiology and ecology of tsetse together with genetic variation within and among populations. High-resolution nuclear genetic markers are useful tools for elucidation of the genetic basis of phenotypic traits. In this study amplified fragment length polymorphism (AFLP) markers were developed to analyze genetic variation in <it>Glossina morsitans morsitans </it>from laboratory and field-collected populations from Zimbabwe.</p> <p>Results</p> <p>A total of seven hundred and fifty one loci from laboratory and field populations of <it>G. m. morsitans </it>from Zimbabwe were genotyped using AFLP with seven primer combinations. Analysis identified 335 polymorphic loci. The two populations could be distinguished by cluster and principal components analysis (PCA) analysis, indicating that AFLP markers can be used to separate genetically similar populations; at the same time differences observed between laboratory and field populations were not very great. Among the techniques investigated, the use of acetone was the most reliable method of preservation of tsetse for subsequent extraction of high molecular weight DNA. An interesting finding was that AFLP also enabled robust within-population discrimination of male and female tsetse flies due to their different X chromosome DNA complements.</p> <p>Conclusions</p> <p>AFLP represents a useful additional tool to add to the suite of techniques currently available for the genetic analysis of tsetse populations and represents a useful resource for identification of the genetic basis of important phenotypic traits.</p

    Development of Mountain Climate Generator and Snowpack model for Erosion Predictions in the Western United States Using WEPP, Progress Report No. 1

    Get PDF
    Executive Summary: This report summarizes work conducted during the initial funding period (November 1, 1989 through June 30, 1990) of a Cooperative Agreement between the United States Forest Service (USFS) and the Utah Water Research Laboratory (UWRL), Utah State University. The purpose of the agreement is to develop a procedure for incorporating western mountain climate into the existing Climate Generator (CLIGEN), which is part of the Water Erosion Prediction Project (WEPP) procedure. In the Western U.S., few meteorological observations exist in high elevation areas where Forest Service properties are located. Therefore, a procedure for estimating climatological variables in mountainous areas is needed to apply WEPP in these regions. A physically-based approach, an expanded and improved orographic precipitation model, is proposed in this report. It will use radiosonde data and also lightning data to simulate convective storms. Climatological sequences thus estimated at ungaged locations will be represented using stochastic models, similar to the approach used in the existing CLIGEN, and their parameters will be available to users through maps. By using these stochastic models, WEPP users can synthesize climate sequences for input to WEPP. Several alternative approaches to developing the Mountain Climate Generator (MCLIGEN) have been formulated and evaluated. These options vary in their spatial resolution. Some will provide synthetic climate inputs whereas others will provide synthetic sequences of water delivery to the ground surface or overland flow delivery. The latter will reduce the user\u27s responsibility for judging adequate snowpack or hydrological simulations, but will enormously increase the effort required for parameterization during the developmental phase. Based on our evaluation, we recommend that Option 2 for generating fine scale climate sequences be adopted. This option appears to satisfy the WEPP spatial resolution requirements of the USFS and requires a reasonable level of developmental effort. We also recommend that Option 3 be available to the users. We recomment that under this option snowpack initial conditions at a specified date be available based on a return period or exceedance probability. Under this option discontinuous simulation periods could be considered. The data, models, and parameters needed to implement the recommended approach can be divided into three parts: 1) climatological process models, 2) a snowpack imulation model, and 3) stochastic models of climatological variables and parameter regionalization. A chapter of the report is devoted to each of these three parts. Each chapter includes a literature review and a description of the proposed methodology and work plan for its development. We further recommend that a comprehensive plan for data collection for validation of the entire WEPP methodology applied to the mountainous Western U.S. be developed. Also, we propose that UWRL take the lead in settin gup a user group for orographic precipitation modelers

    Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals

    Get PDF
    Polygenic Scores (PSs) describe the genetic component of an individual’s quantitative phenotype or their susceptibility to diseases with a genetic basis. Currently, PSs rely on population-dependent contributions of many associated alleles, with limited applicability to understudied populations and recently admixed individuals. Here we introduce a combination of local ancestry deconvolution and partial PS computation to account for the population-specific nature of the association signals in individuals with admixed ancestry. We demonstrate partial PS to be a proxy for the total PS and that a portion of the genome is enough to improve susceptibility predictions for the traits we test. By combining partial PSs from different populations, we are able to improve trait predictability in admixed individuals with some European ancestry. These results may extend the applicability of PSs to subjects with a complex history of admixture, where current methods cannot be applied

    Development of Mountain Climate Generator and Snowpack model for Erosion Predictions in the Western United States using WEPP, Reserach Completion Report for Phase II

    Get PDF
    Executive Summary: This report summarizes work conducted during the funding period (July 1 through September 30, 1990) of a Cooperative Agreement between the United States Forest Service (USFS) and the Utah Water Research Laboratory (UWRL), Utah State University. The purpose of the agreement is to develop a Western Mountain Climate Generator (MCLIGEN) similar in function to the existing Climate Generator (CLIGEN), which is part of the Water Erosion Prediction Project (WEPP) procedure. Also, we are developing a Western U.S. snowpack simulation model for inclusion in WEPP. In the Western U.S., few meteorological observations exist in high elecation areas where Forest Service properties are located. Therefore, a procedure for estimating climatological variables in mountainous areas is needed to apply WEPP in these regions. A physically-based approach, using an expanded and improved orographic precipitation model, is being utilized. It will use radiosonde data and also lighning data to simualte convective storms. Climatological sequences thus estimated at ungaged locatiosn will be represented using stochastic models, similar to the approach used in the existing CLIGEN, and their parameters will be available to users through maps. By using these stochastic models, WEPP usters can synthsize climate sequences for input to WEPP. During the reporting period we have implemented the the Rhea orographic precipitation model and begun preliminary model testing in two regions. Also, we have begun formulation of model modifications for handling convective events. Various snowplack and meteorological data sets have been acquired and others have been ordered. Some of these have been applied in ititial applications of several snowpack models which have been recorded in a modeular form. Work has commenced on the statistical analysis of western climate sequences, including the preliminary assessment of the alternative stochastic model structures. Additional review of literature has been commenced for establishing desing storms and design hydrographs for events of various return periods in mountainous regions. Accomplishments are summarized in three parts: 1) climatological process models, 2) snowpack simulation models, and 3) stochastic models of climatological variablse and parameter regionalization. A chapter of the report is devoted to each of these three parts

    Assessment of physician well-being, part two: Beyond burnout

    Get PDF
    © 2019 Lall et al. Part One of this two-article series reviews assessment tools to measure burnout and other negative states. Physician well-being goes beyond merely the absence of burnout. Transient episodes of burnout are to be expected. Measuring burnout alone is shortsighted. Well-being includes being challenged, thriving, and achieving success in various aspects of personal and professional life. In this second part of the series, we identify and describe assessment tools related to wellness, quality of life, resilience, coping skills, and other positive states

    Isolated hepatic actinomycosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Actinomyces are slow growing, non-spore forming, gram-positive, branching bacilli that thrive in anaerobic and microareophilic conditions. Actinomyces are more commonly associated with oral and cervicofacial infections. Hepatic involvement in infections of the abdomen (known as isolated hepatic actinomycosis) is rare, accounting for only 5% of all cases of actinomycosis.</p> <p>Case presentation</p> <p>We present the case of a 75-year-old Caucasian woman with a 3-month history of night sweats, fever, chills, abdominal bloating, anorexia, weight-loss, and early satiety. The patient was found to have isolated hepatic actinomycosis infection after undergoing a laparotomy with a biopsy of the liver. The patient has now recovered.</p> <p>Conclusion</p> <p>Isolated hepatic actinomycosis is a rare and often overlooked etiology for a liver mass. Given its subacute presentation and nondescript symptomatology, physicians should be aware of this differential and the potential pitfalls in diagnosis and management.</p

    Systems of education governance and cultures of justice in Ireland, Scotland and Pakistan

    Get PDF
    This chapter compares the issue of cultures of justice in the systems of education governance in three education systems: Ireland, Scotland and Pakistan. The focus for the comparison are the current policies which shape the regulation of education. These policies were reviewed to identify key issues relating to social justice and equality, decision-making and accountability. From the analysis of each system, three central issues were identified: firstly, the improvement of a state education system; secondly, the degree of decentralisation and centralisation in governance structures and thirdly, the expectations placed on school leaders. The chapter concludes by discussing the tensions between the drive for system improvement and opportunities for school leaders to build strategies to address issues of inequality in schools
    corecore