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CHAPTER 1 

INTRODUCTION 

1.1 OBJECTIVE 

The overall objective of this project is to develop a procedure for 'generating represen~ative historical 
and synthetic climate sequences at ungaged locations throughout the mountainous Western United 
States. As a secondary objective, we are also developing a snowpack simulation model. The Utah Water 
Research Laboratory (UWRL) is conducting this project under a research joint venture agreement with 
the U.S. Forest Service (USFS) as part of the USFS Watershed and Erosion Prediction Project (WEPP). 

This work is part of a USFS research and development effort and, as such, must provide a usable 
product within the project schedules established by the USFS. The MCLIGEN, which is being developed 
by the UWRL, will furnish climate inputs to the WEPP with the goal that acceptably accurate erosion 
predictions are provided for design and planning purposes. The representation of climate in 
mountainous areas is a major challenge because climatological data are scarce and meaningful 
interpolation of climate variables is difficult in complex terrain. The project is using existing techniques 
which provide adequate climate inputs, adapting existing procedures where appropriate, and developing 
new procedures within the constraints of available data and project resources. ' ' 

Although MCLIGEN is being developed under the WEPP project for erosion prediction, it will have 
many other applications of interest to the USFS and other resource agencies. For example, the climate 
sequences would be useful for driving ecological models or resource assessment procedures which 
require climate inputs. MCLIGEN will also have the capability to be run under climate change scenarios. 

1.2 USER REQUIREMENTS 

The WEPP user wUlneed these "climate sequences" accessible in three "event forms." 

• Selected representative historical events or sequences (e.g., average, dry, and wet). This capability 
would enable users to make erosion estimates for climate sequences based on historical events 
either as observed or as outputs from the climate modeling system. In the first case, the user 
could select a recorded event or sequence of data from a station or : stations which the user 
considers best represents the conditions at the site which is under evaluation. In 'the second 
case, the modeling system would adjust recorded historical events to be representative of 
ungaged locations. ., 

• Continuous simulation of climate for up to 20-year periods using stochastic methods. This will be 
particularly useful in assef,lsing the erosion potential from timber harvest areas, and it could be 
used to estimate a probability distribution of erosion potential, average potentials, or perhaps 
high or low extreme climate cases. High cases could be useful for design of sediment control 
measures, such as detention basins. ' 

• Design events associated with various occurrence frequencies or return periods. 
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Users will choose the form of climate input which they use. UWRL work is focused on the first and 
second forms listed above. The generator will have the capability of providing climate inputs based on 
locational information (such as latitude, longitude, elevation, slope, and aspect). 

1.3 TECHNICAL APPROACH 

MCLIGEN will depend on historical, physically based interpolations of weather sequences from a 
mesoscale-climate modeling system which is comprised of four nested layers: 

1. An existing synoptic scale forecast model (300 x 300 km); 

2. A regional scale climate model (50 x 50 km); 

3. A local scale climate model (10 x 10 km); and 

4. A specific point climate predictor, referred to as "ZOOM." 

Two additional MCLIGEN components are: 

5. A local scale stochastic climate generator; and 

6. A point energy balance snowmelt model. 

We will provide the USFS with a database for the Western U.S. consisting of 13.4 years of climate data 
on a 50-km grid from the second layer model. It is anticipated that this database will be maintained at the 
regional level of the USFS, and that 13.4-year sequences of 10 x 10 km data could be provided for each 
forest using the local scale climate model. The 10 x 10 km datasets will be used for input to ZOOM, 
which will provide climate data at any point on a watershed subarea for which erosion analyses are being 
made. These climate data will be inputs to the hydrologic, snowpack, and erosion prediction components 
of WEPP. ZOOM, the local scale climate simulator, and the 6O-km resolution climate database are the 
project deliverables from this part of our work. The RegCM2 model and the ECMWF synoptic data set 
can also be provided if desired. 

Stochastically generated sequences of climate variables are also required to run WEPP. We are 
developing and testing a nonparametric wetl dry spell stochastic model for daily precipitation. Initially, 
historical-climate data are being modeled, but as generated climate data from the climate modeling 
system become available they will be modeled via the input variables to ZOOM. 

The snowpack simulation model will need to meet some requirements which other snowpack models 
have not been demonstrated to meet. Specifically, the snowpack simulation model should provide 
snowmelt predictions which represent the characteristics of snowmelt events which are important for 
accurate erosion predictions. Also, the model should be a transportable model which will work well for 
the variety of conditions which exist across the Western U.S., and the model should be physically based 
so that it will require a minimum of calibration for local conditions. This last requirement is particularly 
important because WEPP users may not always have the expertise to calibrate the snowpack model. The 
snowpack simulation model is being developed by combining the best components of existing energy 
balance models with improvements which we are developing at the UWRL. 

1.4 PROJECT STATUS 

Three developmental phases were defined in the work plan submitted to the USFS on September 8, 
1989: 
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Phase I: Climate data evaluation and generator design. 

Phase II: MCUGEN coding and evaluation at representative sites. 

Phase ill: Generalization to the entire Western United States. 

Work undertaken during this funding period, beginning January 1, 1994 and January 31,1995, is part 
of Phase II. 

Tasks remaining to complete work are presented in the last sections of Chapters 2, 3, and 4. The 
interrelationship between these tasks is illustrated in Figure 1-1. Tasks are divided mto three increments 
according to funding availability. Funding for increment I was secured, and work was conducted in the 
period ending January 31, 1995. The schedule for increment II tasks is based on a January 31, 1996 
completion. ' 

Papers presented on work conducted under this project during the reporting period are listed below: 

1.5 OUTLINE OF REPORT 

The report is divided into four chapters and an executive summary. Chapters 2, 3, and 4 address the 
three major parts of work: climate modeling system, snowpack modeling, and stochastic modeling. Each 
chapter includes a literature review, discussion of the proposed methodology,'and description of work 
¢~ . 
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CHAPTER 2 

CLIMATE MODELING SYSTEM 

2.1 OBJECTIVE FOR THIS REPORTING PERIOD 

The objective established for the current reporting period was' to complete the development of the 
RecCM2 all-season model for use in developing the MCLIGEN model, to test the RegCM2 model to the 
western U.S. Forest Service study area, to refine the model to generate valid climate parameters at 10 km 
resolution and to test it at 10-km resolution over a 360 x 370 km application area. 

2.2 TASKS 

The following tasks were established for the current reporling period: 

1. Complete the regional RegCM2 (50 km) model run for the period, December 1978 to July 1992, 
for the Western United States. NCAR was to do the computing for the 10 year period between 
1982 to 1992, and we were committed to provide the end periods. 

2. Complete a local RegCM2 (10 km) model run for the period, December 1978 to July 1992, for the 
Bear River Basin in Utah, Idaho, and Wyoming. 

3. Validate the performance of ZOOM and the 10 km Bear River Basin run through: 

a.) Validating the 10 km model for the whole Bear River Basin. 

b.) Incorporation of the WEPP soils model and the USU snow model into ZOOM. 

c.) Intercomparison of the performance of the BATS soils and snow submodels with the 
WEPP soil model and the USU snow model to determine if the models significantly affect 
the calculation of local climate variables. 

d.) Comparison of the BATS soil and snow submodels, the WEPP soils model, and the USUS 
snow model, each driven by ZOOM climate data, with the snow course, SNOTEL, 
RAWS, and satellite data for all seasons. 

4. Evaluate the regional and local model output through comparisons with data from NOAA Coop 
Stations, SNOTEL, RAWS, NWS rawinsonde data, and satellite data. (Funding for this taskwas 
not received as part of the first increment of FY 94 funding.) : . -. 

2.3 ACCOMPLISHMENTS AND PROBLEMS 

Last year's report includes a good overview of the climate mod~ling system:. Appendix D, a preprint 
from our presentation to the American Meteorological Society (AMS) meeting in Dallas TX, also presents 
an overview of the MCLIGEN climate modeling system, driving a distributed hydrological model. 

.. . 

The Regional run (50 km) is only about 60% completed. However, we have had to shoulder this 
entire task. At the beginning of the year, we anticipated doing the computing for only about 2.5 years of 
this 13 year period, while NCAR completed the rest of the run .. After completing a significant portion of 
their run, NCAR discovered a mistake that rendered much of their effort invalid. Consequently, we have 
had to use a significant portion of our computing resources to complete this task. To date, we have 
completed over half of the regional (50 km) Western U.S. RegCM2 run, and roughly a third of the local 
scale (10 km) RegCM2 run (see sections 2.3.2 and 2.3.3 respectively). To allow us to complete the 50 km 
run in the next couple of months, we have broken it up into chunks, and we are running each segment on 
a separate machine. 
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Durning the year, we have improved and debugged much of the process (including RegCM2 itself 
and it's input and output support programs) (see section 2.3.1). We have developed a parallel version of. 
RegCM2 that has significantly cut linear CPU time (see Appendix B). We have been confronted with 
some significant challenges in trying to maintain reasonable accuracy in the 10 km modeling (see sections 
2.3.3 and 2.5.2 for details). Through out the year, we have visually quality controlled every byte of each 
days model run. In this way we have avoided serious mistakes, like the one that cost NCAR so dearly. 
Early on, we invested in the development of a visual data display system that lets us view each days 
output in a video format. Several significant model limitations have been identified and corrected using 
this teclmique. We have begun the task of actually comparing surface climate data to the modeling 
process (see section 2.3.5). . 

A summary of the significant developments is listed below: 

Loss of the 10 years of 50 km model output being contributed by NCAR. 

Because, of the long CPU run times of both the 50 and 10 km runs, we realized that we could not 
afford to wait until we had all the problems solved with RegCM2 to proceed. So we have had to make 
changes to the model while running. We have documented when these changes occur and their nature. 

To effectively use our many available workstations, we have split the long runs up into shorter 
segments, and overlapped these segment to minimize startup transcients in the runs. 

Because, of the need to concentrate on getting the highest quality regional and local scale climate runs 
in a timely fashion, we have concentrated our resources on the RegCM2 runs. Paul Swetik, Charlie Luce, 
and Jeff Blatt have begun efforts on constructing WEPP /ZOOM and we detail this progress and ours in 
section 2.3.4. 

2.3.1 MCLIGEN Climate Model System Development 

Over the past year we have worked on three general area's of development in the MCLIGEN 
modeling system. The first area is development of the RegCM2 model, the second is the development of 
a parallel version of RegCM2, and the third is creation/development of support programs for RegCM2. 
Developing a parallel version of RegCM2 has been critical in total wall clock time to complete the model 
runs in a reasonable amount of time. The changes to the model have been important in improving the 
performance when diffishencies were oberved in the output. The support programs have helped our 
understanding of problems in the model, validating model output, processing boundary condition data 
and in getting the model started. 

1. Changes to RegCM2. There have been several changes necissary to the model as we have been 
using it. As there is not a need to go into the details here, we will just mention a few areas 
where changes were made. These include: 

Double Precision RegCM2. 

Changes in output files. 

Changes in output BATS variables. 

Changes as suggested by NCAR that impliment the Holtslag Planetary Boundary Layer 
(PBL) routine. 

Change to fractional vegetation cover. 

Change in leaf temperature calculation. 

2. Parallel RegCM2. We have developed a preliminary parallel version of RegCM2 that has 
speeded up the processing by up to lOX the original rate. We presented this work at the 
American Geophysical Meeting (AGU) meeting in San Fransico and we reprint the details of our 
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AGU poster in Appendix B. We just point out that the current version of parallel RegCM2 is the 
first phase of the changes that are needed to optimise this process. We are now working on a 
fully parallel version of RegCM2. To make the model run efficently on multiple processors we 
need to modularize the TEND routine, which currently has 80% of the code. This would allow 
us to split the job into smaller chuncks than is now possible. The other note we make is that our 
work with parallel RegCM2 has caught the interest of Cray Research Corp. and Tony Meys of 
Cray Research has given us some free CPU time on a Cray C-90 to develop a parallel version of 
RegCM2 for the Cray. They have also promised us a few evening sessions on the C-90 where we 
would have the machine to ourselves. Preliminary estimat~s suggest in one session we may be 
able to run up to a half a years worth of climate runs. ' 

2. Creation of Support programs for RegCM2. 

2.1 Creation of video program/Color plotting. We spent considerable effort creating a 
program to animate the model data in a 3D color visualization format. This has been 
instrumental in understanding the model output, and fixing errors. It has also been cost­
effective way for initial verfication of the model output. Ensuring that the model is 
progressing and giving reasonable output qualitativly. This effort was also presented at 
the fall-94 AGU meeting (See Appendix C). 

2.2 Creation of program to set Initial snow depth. We also have spent effort developing a 
program to set the initial snow depth for both the 50 km and 10 km runs. This program 
uses snow depth vs. elevation curves for various regions as well as usingSNOTEL and 
NOAA/COOP station data to set values where data is available. This was important 
since the ECMWF data starts in December when snow depth is significant. Without 
setting the initial snow depth the first water year becomes useless, without some 
reasonable values for a starting snowpack. 

2.3.2 Regional Scale Climate Model (50 km RegCM2 Model) 

Goal: "Complete the regional RegCM2 (50 km) model run for the period, December 1978 to July 1992, 
for the Western United States." 

Progress Summary. Currently we have processed over 2000 days of the Western U.S. 50 km run. 
This covers from Dec/1979 to Middle of 1984. NCAR has run from Aug/1985 t9 Aug/1986. We have 
also have over 200 days into a run that starts Aug/1/1988. 

Support programs. 

Changes in ECMWF to, IN file program: 

Creation of a NMC IN file program. As NCAR did not archive ECMWF observational analysis for 
Dec/1979 and ECMWF does not keep archives of it"? old analysis, we had to create our IN files from 
NMCdata. '. 

Changes to RegCM2 effecting the regional runs: 

Change in Sub-grid Scale precipitation routine 

Changes in horizontal diffusion. 

Semi Explicit Moisture Scheme 

NCAR 50 km Multi-year model run. Our NCAR collaborators originally proposed running a 10 year 
50 km run that would covering the entire contential U.S. starting Apr/1981. Our or,iginal plan was to use 
their 50 km run for the bulk of our needed 50 km runs. However, after running from Apr/l981 to 1984 
they noticed that the Sea Surface Temperatures had been entered incorrectly. At this point they stopped 
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running so they could evaluate. At first they thought the effect was unimportant and only effected the 
coast. However, on closer examination they found several other problems with the runs. Precipiation in 
the summer was too high. Desert regions were not being modeled well. 

Breakup of runs into sectional chunks. Because of the intensive CPU and run times that RegCM2 
takes to run, we have decided that it is only prudent to break up the entire run into different time 
segments and run each segement on different machines. We have already started a segment starting in 
1988. NCAR has run a section in 1985. Other segments that we plan to run are: 

Jun/1/1986-0ct/1/1988, 

Aug/1/1990-0ct/1/1991, 

Aug/l/1991-Oct/1/1992, and 

Aug/1/1992-latest data. 

The 1990 runs will take about 73 days of running on an indigo-2, the 1988 run will take 37 days to 
complete, the 1986 run 28 days, and the begining run will take 25 days to complete. Thus we expect the 
50 km runs to be finished in 2 months. The ECMWF observational analysis archives beyond 1989 are in a 
different format than the earlier datasets. Because, of the change in format we have been working on 
changing our codes to accomidate the new format. The newer datasets also have an archive with data 
stored 4X per day as well as the ussual2 X per day. We will use the the data stored the most often. 

Creation of IN to INB file program. To help speed-up the spin-up time needed for each time segment 
we created a program that will use the soil moisture and temperature profile from a previous years run. 
This way the BATS fields will be able to reach equilibrium sooner. 

2.3.3 Local Scale Climate Model (10 km RegCM2 Model) 

Goal: "Complete a local RegCM2 (10 km) model run for the period, December 1978 to July 1992, for 
the Bear River Basin in Utah, Idaho, and Wyoming." 

Progress Summary. We have run over 1100 days of our 10 km run. Running from Dec/5/1978 
through 1981 and now into 1982. 

Changes to the Local RegCM2 model system to date include: 

Changes to nest program 

Modify Lake Model for Great Salt Lake 

Modifications to the Precipitation Auto-Conversion term 

Modifications to the Radiation routine 

Changes in horizontal diffusion 

Breakup of runs into sectional chunks. 

2.3.4 ZOOM, the Specific Point Weather Generator 

Distributed ZOOM: 

Slope / Aspect Angle inclusion in ZOOM: 
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This section has not yet been completed. 

2.3.4.1 ZOOMIWEPP 

Goal: "Incorporation of the WEPP soils model and the USU sno~ model into ZOOM." 

Progress Summary. In order to integrate the functions of the higher level climate models with th.e . 
Water Erosion Prediction Project (WEPP) model more closely SOql.e of the functions of ZOOM/BA1? are 
being incorporated into the WEPP model. This method will allow better modeling of the effects of 
vegetation on microclimate. In particular, evapotranspiration from forests is strongly dependent on soil 
moisture conditions, and a better representation of temperatures below the canopy is made pOSSible by 
incorporating the more detailed hydrology of the' WEPP modeL Growth of shrub, grass, and herb species 
is strongly affected by this modification to the climate, and their growth and survival strongly affect 
erosion. 

The flowcharts in Figures 2.1 - 2.3 show conceptually the layout of ZooM/WEPP. The flowchart has 
been split into three pages, corresponding to three sets of processes. On figure 2.1, processes are 
predominantly atmospheriC and are modified primarily by the topography. The second figure (figure 
2.2) includes mostly surface hydrology routines that are strongly affected by site topography and 
vegetation and figure 2.3 covers the interaction .between soil water, microclimate, and plant growth .. The 

, - plant growth routines are based on the BGe models. . 

The initial section of ZOOM/WEPP adjusts modeled weather at the nodes to the horizontal 
coordinates of the site of interest. When looking at historical weather (1978-1992), the program will 
interpolate the data using the 4 comer points around the site. Because the stochastic generator does not 
handle spatial correlations between nearby nodes, a weather sequence for the nearest node to the site is 
used when stochastic sequences are .used. Psuedo-historic weather sequences (from RegCM2 10 km 
model runs) are recorded hourly at the nodes, and stochastic weather is generated on daily time steps. 

The next phase adjusts the weather variables (precip, temperature, humidity, wind) for elevation and 
aspect. This section will use modules already in ZOOM/BATS and incorporate the rain/snow 
partitioning and drift components of the snowmelt model described in a later chapter. An interception 
model will be designed to account for the effect of forest vegetation on precipitatio~. 

The surface hydrology routines start with the snowm~lt model. Either snowp·ack outflow or direct 
rainfall is then converted to a hyetograph for the infiltration and overland flow model of WEPP. 

-
Once infiltration is determined" the plant physiology model determhies how much wa-ter is released 

through evapotranspiration through each layer of the canopy. This is used to determine temperature for 
lower layers in the canopy and how much soil water is withdrawn. The temperature is important in 
describing plant growth in the lower layers and the probability of plant regeneration. The remainder of 
the model is plant growth and erosion calculations based on the weather and hydrology calculations. 

Several components of ZOOM/WEPP have been completed. The basic hydrology components of 
WEPP have been coded and valida~ .. The snowmelt model has been incorporated into the WEPP model 
and is awaiting verification. Validation of the snowmelt model is described in a chapter 3. The 
adjustments for elevation and aspect are already in ZOOM/BATS and will be incorporated into 
WEPP/ZooM.. . 

Remaining development tasks are the plant phYSiology, reproduction, and growth models and a new 
interception routine. Most of the plant physiology and growth routines will be based on a variant of 
BGe. The reproduction model is in development. Existing interception ro~tines (ie. BATS) are 
oversimplified,· and a new one will be designed for this model. 
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Figure 2.2 
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Figure 2.3 
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2.3.4.2 ZOOM/BATS Snow and USU Snow models 

Goal: "Intercomparison of the performance of the BATS soils and snow submodels with the WEPP 
soil model and the USU snow model to determine if the models significantly affect the calculation of local 
climate variables." . 

Progress Summary. For completion of the other tasks and to·give highest emphisis on getting the 
highest quality regional and local scale model outputs we did not cOni.plete this task. We did get an older 
version of the USU snowmodel and have done comparisons of the computations to the BArS model. 

2.3.5 MCLlGEN Model Validation 

Principal Componertt Analysis (PCA analysis), 

Daily point COOP /SNOTEL comparisons of Tmin, Tmax, and Precip. 

Comparisions to gridded station data. 

These efforts were delayed by the available funding, and have been tranferred to the next reporting 
period. 

2.3.5.1 Regional Scale Climate Model Evaluation (50 km Western U.S.) 

Goal: "Evaluate the regional model output through comparisons with data from NOAA Coop 
Stations, SNOTEL, RAWS, NWS rawinsonde data, and satellite data. (Funding for this task was not 
received as part of the first increment of FY 94 funding.)" 

2.3.5.2 Local Scale Climate Model Evaluation (10 km Bear River Basin) 

Goal: "Evaluate the local model output through comparisons with data from NOAA Coop Stations, 
SNOTEL, RAWS, NWS rawinsonde data, and satellite data. (Funding for this task was not received as 
part of the first increment of FY 94 funding.)" -

2.3.5.3 ZOOM Model Evaluation 

Goal: "Comparison of the BATS soil and snow submodels, the WEPP soils model, and the USU snow 
model, each driven by ZOOM climate data, with the-snow course, SNOTEL, RAWS, and satellite data for 
all seasons." - ..... 

2.4 WORK PLAN FOR FY 1995 

The following tasks are formulated for the next reporting pepod: 

C-l. Finish the regional RegCM2 (50 km) model run for the period, December 1978 to July 1992, for 
the Western United States. 

C-2. Finish the local RegCM2 (10 km) model run for the period, December 1978 to July 1992, for the 
Bear River Basin in Utah, Idaho, and Wyoming. . 
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C-3. Evaluate the regional and local model output through comparisons with data from NOAA Coop 
Stations, SNOTEL, RAWS, and NWS rawinsonde data. 

C-4. Incorporate WEPP /BATS adjustments into WEPP /ZOOM and complete the vegetation 
component of WEPP /ZOOM. 

C-S. Validate the WEPP /ZOOM model through comparisons with NOAA/Coop, SNOTEL, and 
RAWS stations. 

~ '. 
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. CHAPTER 3 

SNOWPACK MODELING 

3.1 OBJECTIVE FOR THIS REPORTING PERIOD 

The objective of the snowmelt modeling work was to develop arid test a transportable .energy balance 
snowmelt model to provide snowmelt inputs for the calculation of erosion in WEPP. The model is to be 
driven by climate generator inputs. 

3.2 TASKS 

Model development was essentially complete and is described in previous reports. The task for this 
phase of the work was: . 

1. To assist with the incorporation of the snow model into ZOOM/WEPP. 

3.3 ACCOMPLISHMENTS AND PROBLEMS 

The major accomplishment of this period was a thorough revision of the code to resolve some bugs, 
numerical instabilities, and to improve the structure. FollOWing this revision the code was transmitted to 
the USDA Forest Service, Moscow, ID, and assistance was given in understanding and incorporation of 
the code into the ZOOM/WEPP components being developed there. The model was also tested further 
against data from Upper Sheep Creek, within the Reynolds Creek experimental watershed, Boise, ID, and 
against data collected in Cache Valley, near Logan, UT. These tests were reported in the following 
publications which are included as Appendices 4A and 4B (Tarboton et al., 1995, Tarboton, 1994) to this 
report. Based on this work, the following deficiencies and shortcomings need to be noted: 

1. The parameterization of atmospheric instability based on Richardsons number was found to be 
deficient because the values obtained from typical input data frequently resulted in a 
Richardsons number greater in magnitude that the range for which the parameterizations were 
valid. An option to turn off the effect of atmospheric instability was included in the restructured 
code and until this is resolved we recommend that the instability parameterization be tprned off. 

2. The model has a tendency to underestimate the snow energy content early in the season prior to 
melt. This was discovered from the tests against data collected in Cache Valley where we had 
temperature measurements within the snowpack so we could check this aspect of the model. 
The calibration of adjustable parameters within the model apparently offsets this deficiency, but 
if possible it should still be corrected so that the model is as physically close to correct as 
possible. Melt predictions are still relatively good. 

3. The representation of vegetation through a vegetation density factor F is still relatively primitive 
and has only had minimaltestmg against data at the CSSL forested site. We do not have other 
data on snow accumulation and melt rates, together with the necessary variables to drive the 
model under canopies of varying vegetation density. 

3.4 WORK PLAN FOR FY 1995 
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Our objective for this period is to resolve the deficiencies noted above to the extent possible and 
verify the operation of the model within WEPP 1 ZOOM. More specific taks have been highlighted as . 
follows: 

C-l. Test the model against additional data. Additional data that are available includes: (i) data 
collected by Dennis Harr in the Pacific Northwest; (ii) data from the GLEES experimental 
watershed; and (iii) Snotel data. These tests should be performed in cooperation with USFS staff 
at Moscow, ill, using the model within an experimental version of WEPP. This will serve as a 
verification of the incorporation of the model into WEPP and provide a standard interface for 
data input and reporting of results. The utility and feasibility of these tests depend on the 
availability of the input variables necessary to drive the model. For some tests (Snotel in 
particular), the model will need to be driven by climate model inputs. This will serve as a check 
on the climate model, as well as on snow model components. 

C-2. Investigate the energy content underestimation problem. Diagnose the model runs using the 
Cache Valley data to understand why the energy content is under-represented and correct any 
deficiencies discovered. Re-calibrate if necessary. 

C-3. Research the parameterization and calculation of turbulent flux transfers to see if there is a 
reasonable way to account for atmospheric stability linstability while remaining within the 
ranges of values for which the parameterization has been developed. 

Tasks 2 and 3 are open ended and, given the funding for this component of the research, substantial 
improvements cannot be guaranteed. 
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CHAPTER 4 

STOCHASTIC MODELING AND PARAMETER 
REGIONALIZATION 

4.1 OBJECTIVE FOR THIS REPORTING PERIOD 

The objective established for the current reported period was to improve the multivariate 
nonparametric generation scheme to facilitate simulation from the conditional density Jormed by 
conditioning on a key variable, precipitation. Also to explore other alternatives. 

4.2 TASKS 

The following tasks were established for the current reporting period: 

Task IV-I: Improve the multivariate nonparametric generation scheme to facilitate simulation 
from conditional density formed by conditioning on the precipitation. 

Task IV-2: Explore other alternatives to multivariate generation of weather variables. 

4.3 ACCOMPLISHMENTS 

1. The required improvements were made to the multivariate nonparametric generation scheme. 
The improved method samples the original data with replacement while smoothing the 
empirical conditional distribution function. The technique can be thought of as a smoothed 
conditional Bootstrap and is equivalent to simulation from a kernel density estimate of the 
multivariate conditional probability· density function. This improves an the classical 
Bootstrap technique by generating values that have not occurred exactly in the original 
sample and by alleviating the reproduction of fine spurious details in the data. 

Precipitation is generated from the nonparametric wetl dry spell model as described in Lall et. 
al. (1995). A vector of other variables (solar radiation, maximum temperature, minimum 
temperature, average dew point temperature and average wind speed) is then si:nlulated by 
conditioning an the vector of these variables an the preceding day~ and the precipitation 
amount on the day of interest. An application of the resampling scheme with 30 years of daily 
weather data at Salt Lake City, Utah, USA is provided. This method has been sent for 
publication as Rajagopalan et al. (1995) and is presented in Appendix 4A. 

2. In the course of exploring other alternatives to nonparametric multivariate generation of 
weather variables, a nearest neighbor bootstrap method was developed. The motivation to 
this approach comes from a desire to preserve the dependance structure of the time series 
while bootstrapping (resampling it with replacemen~). This method is data driven, and is 
highly. parsimonious. The method follows to the work of Lall et al. (1995) where they 
demonstrate this idea by applying it to resampling monthly streamflow by Lall et.al (1995). 
The development of the nearest neighbor approach to simulating weather variables has been 
sent for publication as Rajagopalan et al. (1995), and is presented in Appendix 4B. 
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3. In the course of improving the nonparametric wet/dry spell model for modeling daily 
precipitation, that was presented in Bowles et al. (1992), a new estimator for discrete 
probability distributions was developed and has been published as Rajagopalan and Lall 
(1995), besides incorporating this in the wet/dry spell model, that have been sent for 
publication as Lall et al. (1995) and Rajagopalan et al. (1995). The new estimator for discrete 
probability distributions is presented in Appendix 4C. 

4. The wet/dry spell model as we know involves the breaking up of the year into seasons 
determined apriori. The seasons vary from place to place, as a result the same seasonal break 
of the year may not hold across all sites. Nonparametric techniques for studying the seasonal 
patterns in precipitation that could provide objective guidelines to breaking the year into 
meaningful seasons, were identified and were applied to precipitation data from numerious 
sites, along a meridional transect in western U.S. This is presented in Rajagopalan and Lall 
(1995) and also in Appendix 4D. 

5. In the wake of significant change in seasonality of precipitation, an alternate representation 
to the wet/dry spell model for daily precipitation, that obviates the need for breaking the 
year into seasons was motivated. This alternate representation was developed as a 
nonhomogeneous Markov model that used the discrete kernel estimator developed in 
Rajagopalan and Lall (1995). The nonhomogeneous Markov model is presented in Rajagopalan 
et al. (1995) and also in Appendix 4E. 

4.4 WORK PLAN FOR FY 1995 

References 

Lall, et al (1995) 
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lNTRODUCTION 

Welcome to a new world -- the world of Mountain Climate Generator (MCLIGEN)! 
MCLIGEN is unique in that it links any interested Forest Service researcher, agent, or personnel, 
to state of the art meteorological data in way never before accomplished! It allows the Forester to 
access historical, modeled psuedo-historic, or even modeled doubled C02 for any point he 
chooses within the set of files he has. Such data has always existed but never before at such high 
resolution and so easily accessed by personnel within the forest service. This is the vision and the 
reason for MCLIGEN now lets get into the details of the methodology of use. 

ZOOM is the interface from the 10 km high resolution climate model output data to the 
point and basin surface hydrologic models (WEPP (point model), BATS (point or grid model) 
and/or CVHM (Basin model». The files used for this interface are called local area (LA) files, 
because they only consist of a small portion of the 10 km model run. In general they should be 
approximately 60 km x 60 km, this way an entire 15 year series can be loaded onto a single 2 
Gigabyte disk. Were the entire area to be loaded a 50 GigaByte disk would be needed. Also it 
was felt that in general a researcher would only be working with one small area at a time and the 
excess information stored for the other areas was a waste of disk storage. When a researcher 
needed a new area he could load the other set of files that included the area of interest. This allows 
a longer time-series to be loaded onto a single disk rather than either having to only load part of the 
files at a time or flip through a stack of CD's each time ZOOM/WEPP is run. If a larger area is 
actually needed the same format of flles can be used just as well for a larger area as for a smaller 
one, but only a much shorter time-series can be loaded at a time. The other advantages of these 
files over the regular output files of the Penn State / National Center of Atmospheric Research's 
(NCAR) Mesoscale Model version 4 (MM4) Regional Climate Model number 2 (RegCM2) is: data 
is limited to only that needed for our work, it's in single rather than double-precision (saving disk 
storage), conversions for wind direction position etc. are already completed. Another problem 
taken care of with the LA flles is elimination of the lateral boundary data. The outermost data 
points of the run are almost purely driven by the input Boundary Conditions to the run and are thus 
not useful. Because, the LA files include only the inner portions of the data this part of the data is 
already stipped out thus saving disk space and preventing Forest Service personnel from having to 
remember or determine these limits. Furthermore the LA flles only use data stored from the regular 
RegCM2 output so new LA flles can be added after a RegCM2 run is made. Thus, the researchers 
at Utah State University / Space Dynamics Lab. (USU/SDL) have already performed the difficult 
and obscure conversions needed to be done on the data, as well as eliminating the boundary data 
that is not relevant. This way the researchers at the Forest Service can concentrate on their work 
rather than being required to understand obscure conversions on the data. 

The researchers at USU/SDL will need help from the Forest Service in deciding where the 
boundaries for each LA flle should lie. There should be a larger amount of overlapping and 
redundancy to take care of as many of the possible variations that Forest Service researcher's will 
need. But, as the LA flles can be constructed from the regular output flles of RegCM2, new LA 
files can be added at any time. 
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NOMENCLATURE 

LA fIles are addressed as LA##SuRF??, LA##BATS??, LA##ELEV??, and LA##RAD?? files. 
The n##" corresponds to a 2 digit number to identify which area this fIle corresponds too, the n??" 
corresponds to the last two digits of the year the file stores information on. LA fIles are designed 
to store an entire year worth of data in each file. "SURF" is the surface information file, BATS is 
the BATS surface information file, "ELEV" is the altitude profile information file, and "RAD" is 
the radiation! explicit moisture information file. 

The files are organized so that the standard driving variables are in one file. The other files contain 
different data useful in utilizing the advanced options of ZOOM. This way the disk storage is kept 
to a minimum. One researcher may want/need one advanced option but not another, thus he can 
load the files needed and avoid the unneeded files. Because the disk storage requirements large, it 
is important to provide flexibility in the creation of ZOOM input files. By nature ZOOM needs a 
long time series, but not necissarily a large area, so we created files that contain a complete year of 
information for a limited area. At the same time it was realized that at a later time some more 
advanced options may require certain new files thought to be unnecessary at first. For example, 
the dynamic option of ZOOM using the ELEV LA file to get Lapse rate. Or using the RAD LA file 
to get rainwater at higher elevations. Also as more experience is built up with ZOOM we will find 
which options are the most important for making it run the most efficiently with the best results. 
Following we explain the different fIle types, explaining if the file is a main driver file or an 
advanced option file, the variables stored, the number and type of vertical layers in the file, and 
how often the data is stored. 

File Types: 

BATS The BATS information file is the main driver of ZOOM. It contains 
the standard driving information for ZOOM. Containing the driving 
temperature, pressure, humidity, radiation, and rainfall data. It also 
contains other surface data either to be used for initial conditions or 
for model comparison for possible adjustment to the driving 
variables for more advanced options of ZOOM. Surface data is 
stored hourly. 

ELEV This file is an advanced option file for the dynamic option of 
ZOOM. It contains the temperature, N-S, E-W winds, and humidity 
for each model sigma layer.(the model has 20 layers, but we will 
most likely restrict this file to the bottom 5 to 10 layers). ELEV data 
is stored every 6 hours. 

SURF This file stores some of the surface information used in conjunction 
with the ELEV file. It contains ground pressure, total precipitation, and convective 
precipitation. SURF data is stored every 6 hours. 

RAD This file is an advanced option file for ZOOM. Currently the only 
data stored in the file is the fractional cloud cover. When the 
RegCM2 model is run with the explicit moisture scheme (which it 
will be at the 10 km resolution) the file will also store the cloud 
water and rain water. It stores data for each model sigma layer (the 
model has 20 layers, but we will most likely restrict this file to the 
bottom 5 to 10 layers). RAD data is stored every 6 hours. 
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f ' MODEL NOTES 

It must be kept in mind at all times when using this data that it is modeled data not real data. 
It does use a state of the art physically comprehensive model in the same class of model as used by 
the National Weather Service for forecasting, but a model nonetheless. It does use boundary 
conditions that are derived from observational data, and the boundary conditions are updated every 
12 hours, and these boundary conditions do have the greatest impact in driving the model. But, no 
matter the 10 km run, the real observational data is almost always several 100's of Km away from 
your point of interest. Also the data contained within the model represents that for the surface 
slope, aspect angle, height, and land-use types that the model represents. In general this is the 
average of each of these over the 10 km grid square of interest. Because this average is done on a 
10 km grid square basis, each of these can be significantly different than at any specific point 
within the grid square. For example the height could be as much as 1000 m higher or lower than 
the actual height at that point (For the extreme example of a very high and narrow peak or canyon). 
The model sets the surface slope and aspect angle to zero so this could be off by up to 45 degrees. 
Also the land-use type could be as wildly diverging as desert to evergreen forest or visa-versa in 
the most extreme example of an elevation difference that puts a forest next to a desert area. 
Remember, that the model data more or less represents what the variables would be, as the average 
of each 10 km grid square, if the topography, land-use, slope and aspect angles were those that the 
model uses. ' 

This is why it is important to run ZOOM beneath the 10 km data-set to begin to account for 
some of the local effects of different: elevation, slope, aspect, and land-use. Some local effects can 
not be accounted for very well-- such as a canyon breeze, or fog or frost pockets. Also, as there 
is not a two way interaction between the driving variables and the surface variables, some 
information will indeed be lost. For example, the model may be at a high enough temperature to 
melt all the snow in the 10 km grid square, but at the zoomed point, say 500 m higher, the snow 
may be still quite deep. This would significantly cool the driving air temperature, but because this 
two way interaction is gone the driving air temperature will heat the snow more than it should. 

But in comparisons of the model with averaged observed data at 50 km resolution we 
expect the following. Daily and hourly information can be significantly off, mostly due to the 
model inaccurately predicting the speed, ,track, and extent of storms. The model may have the 
storm moving faster or slower than the storms actual rate and arrive at the right position as much as 
a day or two before or after the actual storm did. The position may also be off by tens to hundreds 
of Km, and the extent may be off also. All of this means that in the short term and over a small 
area the model is not very accurate. But, if you average over a longer time period and a larger area 
the model produces a reasonable climate. The monthly averaged temperature is likely to be within 
2-5 degrees of observed with most of this difference accounted for by the ZOOM adjustments. 
Precipitation, however, is much more difficult to modeL Wintertime precipitation is likely to be 
within 4% to 50% of actual precipitation, depending on the region. Summertime precipitation can 
be very bad however, with a strong tendency for over prediction. If you just measure precipitation 
yes or no and compare this to observations a good correspondence will be shown, but the amounts 
themselves may be off, by up to 3X actual precipitation. Numerical point storm events are likely 
and will need to filtered out by ZOOM. Also for this reason fudge factors may need to be built into 
ZOOM to compensate for the models over prediction of summertime precipitation. Also 
orographic effects within a 10 km grid square can effect the distribution of precipitation within a 10 
km grid square. A simple parameterization of this effect will be accounted for in ZOOM. Radiation 
will be reasonable but completely dependent on the clouds and storms predicted by the model. 
Thus comparisons here can not be on amounts, but comparing cloudy days with modeled days that 
are cloudy. 
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Lambert Confonnal Grid Projection 

The model is done on a grid that is not even with latitude longitude, but even on a lambert 
conformal conic grid projection. In other words, because of the curvature of the earth the grid 
squares are not quite 10 Km in each direction they are distorted in the manner prescribed by a 
Lambert Confonnal conic projection with standard parallels at 30 degrees North latitude and 60 
degrees North latitude. Because, of this distortion the model stores both the latitude and longitude 
at the center of each model grid square, thus the actual distance on the globe can be calculated for 
each 10 kIn grid square to the next or converted to a different projection. However, even though 
the projection is Lambert Confonnal conic, the data has been converted so that all vectors are in 
standard directional coordinates (N-S, E-W). 

RegCM2 Model Physics Packages 

RegCM2 encompasses seven major packages to model the physics of the atmosphere. The seven 
areas are: The basic atmospheric model itself, the time integration scheme, the cumulus cloud 
parameterization, the radiation model, the surface physics model (BATS), the atmospheric 
planetary boundary layer (APBL) model, and the lake model. 

Atmospheric Model RegCM2 uses the standard Navier-Stokes equations of: continuity, 
momentum, and Thermodynamic equations to model the basic atmosphere. 
In addition to this water vapor is tracked in the model and the latent heat of 
condensation is accounted for. Because, of the complexities of ice-phase 
physics the latent heat of fusion of water is not tracked. Although at mid­
latitudes these processes can be important as most precipitating clouds will 
likely have at least a portion below freezing. An explicit option can be 
chosen that tracks cloud water, rain water, and water vapor separately. This 
provides a more accurate scheme for tracking water especially at high­
resolution. 

For speed and accuracy RegCM2 uses a Arakwara-B grid. This means that 
some of the data is horizontally offset by half a grid cell from the other data. 
The horizontal winds (u and v) are on the dot grid and the rest of the data 
are on the cross grid points. Similar to the following representation: 

Figure 1. (x-y grid) 

xxxxxxx 

XXXXXXX 

XXXXXXX 

Note that as in the example there is one less row and column for the cross 
grid points than for the dot grid points. 

Time integration Scheme 

Like most fluid dynamics models, RegCM2 becomes numerically unstable 
if the time step is not sufficiently small for the size of the horizontal (and 
vertical) grid steps. This is mainly due to any types of waves that propagate 
through the medium (such as gravity, sound, or Rossby waves). The time 
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step must be small enough that the fastest of these waves can only step 
forward at most one grid square in each time step. 

The basic model uses a leap frog approach for advancing forward the 
differential equation. This has the advantage of using centered differences 
for calculating derivatives which increases the accuracy of the method. The 
model calculates the derivatives at the current time-step and then uses them 
to advance the previous time step values forward two time-steps. The high 
energy terms are then dropped out with a Asselin fIlter. 

Now, to speed up the computations even further we use a split-explicit time 
integration scheme to allow for larger time-steps to be used. The fastest 
waves are gravity waves that are quasi-linear and they only effect a small 
portion of the mass of the atmosphere. So we use linear theory to correct 
the solution for these fastest waves. After the normal time step we correct 
the solution by adding in the correction that results when integrating the 
linear solution for a time step a fourth'the size of the regular time-step, and 
then again at half the size of the regular time-step. In this way the regular 
time-step can be about 3X larger than it would have to be otherwise. And 
even though the split-explicit scheme is running at time-steps a fourth the 
size of the regular time-step, because it's solution is linear it can be 
calculated in a small fraction of the time for the regular time-steps. 

Sub-grid scale Cumulus Cloud Parameterization Model 

Radiation Model 

A very large percentage of rainfall especially in the summer comes from 
convective type (Cumulus) clouds which are on the scale of 1-20 km in 
horizontal extent. Because, RegCM2 attempts to model with grid sizes 
from 10-100 Ian, these Cumulus clouds must be parameterized as a sub­
grid scale process that occurs within a model grid square. RegCM2 has two 
one-dimensional Cumulus parameterization schemes: a Kuo-Anthes type 
approach and a Grell scheme that has flexibility in the closure type, used 
(Arakwara-Shubert or Fritsch-Chappell type closure schemes). The 
Cumulus cloud scheme will test each layer to see if it is convectivly unstable 
(if you lift a parcel of air to the next layer and the layer is stable or rising -­
the layer is convectivly unstable). If a layer is convectivly unstable it then 
checks if any water vapor will condense from the rising air parcel. If not it 
goes on, but if it does -- it has found the base of a Cumulus cloud. At this 
point there are further checks and the cloud model parameterizes the 
properties of the cloud itself as well as how it's creation will effect the large­
scale parameters. This is the point where the different closure schemes 
differ. 

RegCM2 uses a one-dimensional column model to track radiation. It divides 
the solar spectrum into 12 bands from 0.2 to 5 micrometers. Seven UV 
bands, one visible (0.35-0.7 micrometers), and four IR bands. Outside this 
range the solar spectrum is insignificant, but because of absorption and re­
emission by the atmosphere a long wave energy flux is present also. The 
model includes scattering and absorption by the surface, clouds, water 
vapor, Ozone, Carbon dioxide and molecular Oxygen. The model tracks 
the flow of water vapor. Ozone is set by a constant profile. And the mass 
mixing ratios for Carbon Dioxide and molecular Oxygen are assumed 
constant. Direct and diffuse radiation is differentiated all the way down to 
the surface. The Long Wave flux incident from the atmosphere is the total 
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flux over all wavelengths that is emitted from the atmospheric sources, but 
as it represents a black-body at about 280 K it's peak is around 20 
micrometers and is only significant from about 5-30 micrometers. 

Surface Physics Model 

Modeling the surface physics and hydrology is important in running an 
atmospheric model that spans more than a week of simulation time. The 
surface layer model used by RegCM2 is the Biosphere Atmosphere Transfer 
Scheme (BATS) model developed by Richard Dickenson and Ann 
Henderson-Sellers. This model keeps track of the soil moisture in a 3-layer 
hydrology model. It tracks the soil temperature, surface skin temperature, 
temperature of the foliage and temperature of the air in the canopy. It tracks 
the snow depth and areal coverage, and the vegetation growth. As well as 
determining the drag the vegetation has on the atmosphere. 

Planetary Boundary Layer Model 

Lake Model 

General: 

A significant amount of the energy of the atmosphere near the surface is put 
into driving small eddies on the scale of 1 cm to 10 meter. Because these 
eddy's are too small to be resolved by the atmospheric model directly they 
are parameterized by the stability conditions of the grid cell. These eddys 
tend to dominate within the Atmospheric Planetary Boundary Layer 
(APBL), which is the region of the atmosphere from the surface up to 500-
1500 meters up -- depending on stability conditions. The model 
parameterization used by RegCM2 is the Holtslag APBL. 

RegCM2 also has a fresh or salt water columnar lake model. Ocean 
temperatures are set using the CAC monthly averaged 2.5 degree Sea 
Surface Temperature produced by NMC. It uses observations from ships, 
buoys, and satellite. But, to get the surface temperatures over lakes the 
Hostetler Lake model is used. This lake model takes each model grid point 
over the lake and models it as a column at 1 meter vertical steps. 
Attenuation of radiation with depth is accounted for and mixing due to eddy 
diffusion is parameterized. 

Description the LA fIle Header 

All the LA files share the same header type. The header gives the dimension of the 
fIle arrays, the limits for this LA file, the sigma levels, the latitude, longitude, 
surface height, and BATS land-use type for the center of each grid square stored in 
the file. It also contains a character string description of each of the variables stored 
in the particular fIle, a general title and specific LA fIle type description. And a 
listing of the valid dates and times the fIle stores information on. Remember the 
model is on a Lambert Conformal Conic grid projection so the grid points are 
evenly spaced in this projection, but distorted in latitude and longitude. So there is 
not an even spacing in latitude or longitude of the grid points. Because of this the 
value for both latitude and longitude is given for each and every point stored in the 
file. 

List of variables: 

TITLE(l) This is a 100 character title giving the model version and short description 
of it. 
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TITLE(2) 

IY 

JX 

KZ 

This is a 100 character title giving a description of this file type. (Radiation 
file, Surface file etc.) 

This is the dimension of the entire model run grid in the "Y" "N-S" 
direction. The model is on a Lambert Conformal grid projection so moving 
in the Y grid direction does not directly correspond to moving in N -S, 
except near the grid center. 

This is the dimension of the entire model run grid in the "X" "E-W" 
direction. The model is on a Lambert Conformal grid projection so moving 
in the X grid direction does not directly correspond to moving in E-W, 
except near the grid center. 

This is the dimension of the number of sigma layers stored in the file. It can 
be up to the number of layers stored in run. Files with just surface 
information will just have KZ=l. . Because, MCLIGEN does not need the 
whole atmospheric profile up to the tropopause, but maybe just the bottom 
1000 m or only about 10 layers will likely be stored. 

IYO This is the starting index in the nyu direction for this local area file. LA files 
only have data stored in the ny" direction between IYO and IYF. 

IYF This is the ending index in the "yn direction for this local area file. LA files 
only have data stored in the ny" direction between IYO and IYF. 

JXO 

JXF 

NTYPES 

DATYPE 

NCR 

DIR 

BEGDAY 

This is the starting index in the "X" direction for this local area file. LA 
files only have data stored in the "X" direction between JXO and JXF. 

This is the ending index in the "X" direction for this local area file. LA files 
only have data stored in the "X" direction between JXO and JXF. 

This is the number of different data-types stored in the LA fIle. 

This is a character string description of each data type stored in the file. 

This is the number of characters stored in the directory name. 

This is the directory of where the file came from. 

This is the beginning day for the whole run. In the YYJJJHH format, 
where YY=last two digits of the year the file is storing, JJJ=the julian day, 
and HR = hour in Universal time (UT). (Ie. 7833500 = year 1978 julian 
day 335 (or Dec/l) 00:00 hours UT). 

IDATEBEG This is the beginning day that is stored in the file. In the YYJJJHH format, 
where YY =last two digits of the year the file is storing, JJJ=the julian day, 
and HH = UT in hours. (Ie. 8200100 = year 1982 julian day 1 (or Jan/I) 
00:00 hours UT). 

IDATEEND This is the last day that is stored in the file. In the YYJJJHH format, where 
YY=last two digits of the year the file is storing, JJJ=the julian day, and 
HH = UT in hours. (Ie. 8236523 = year 1982 julian day 365 (or Dec/31) 
23:00 hours UT). 
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DAYINC 

TOPO 

XLAT 

XLON 

XLUSE 

This is the number of days that are stored in each RegCM2 output file. It 
isn't really needed for LA ftles but is given anyway. 

This is the array of elevation heights in meters for the center of each model 
grid square. 

This is the array of latitudes in degrees for the center of each model cross­
point grid square. 

This is the array of longitudes in degrees for the center of each model cross-
point grid square. 

This is the array of BATS landuse types that are used for each model grid 
square. There are 18 BATS land-use types classified as follows: 

Table I 

1 = Crop 
2 = Short Grass 
3 = Evergreen Needle forest 
4 = Deciduous Needle forest . 
5 = Deciduous Broad-leaf forest 
6 = Evergreen Broad-leaf forest 
7 = Tall grass 
8 =Desert 
9 = Tundra 
10 = Irrigated Crop 
11 = Semi-desert 
12 = Glacier 
13 = Swamp 
14 = Lake 
15 = Ocean 
16 = Evergreen shrub 
17 = Deciduous shrub 
18 = Mixed forest (decid. and evergreen mix) 

Because of the lack of soil texture and color information, the land-use type 
is also used to estimate the soil texture and color class. BATS has 12 soil 
texture types and 8 soil color types. Texture class 1 corresponds to sand, 
class 6 is loam and class 12 is clay. Soil color class 1 is light and 8 is dark. 

Tablell 

Landuse type = Texture class, color [veg] 

1 = Tex 6, Color 5 [Crop] 
2 = Tex 6, Color 3 [Short Grass] 
3 = Tex 6, Color 4 [Everg. Needle] 
4 = Tex 6, Color 4 [Decid. Needle] 
5 = Tex 7, Color 4 [Decid. Broad] 
6 = Tex 8, Color 4 [Ev~r. Broad] 
7 = Tex 6, Color 4 [Tall grass] 
8 = Tex 3, Color 1 [Desert] 
9 = Tex 6, Color 3 [Tundra] 
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10 = Tex 6, Color 3 [lrr. Crop] 
11 = Tex 5, Color 2 [Semi-desert] 
12 = Tex 12, Color 1 [Glacier] 
13 = Tex 6, Color 5 [Swamp] 
14 = Tex 6, Color 5 [Lake] 
15 = Tex 6, Color 5 [Ocean] 
16 = Tex 6, Color 4 [Ever. shrub] 
17 = Tex 5, Color 3 [Decid. shrub] 
18 = Tex 6, Color 4 [Mix forest] 

The porosity of the soil (The fraction of the soil volume that is void and can hold 
water) is associated with it's texture class the 12 classes are assigned the following 
values for porosity: 

Tablem 

SIGMA 

Texture class (type) = Porosity (unitless (volume/volume) 
1 (Sand) =.33 ' 
2 =.36 
3 = .39 
4 =.42 
5 =.45 
6 (Loam) =.48 
7 = .51 
8 = .54 
9 = .57 
10 = .60 
11 = .63 
12 (Clay) = .66 

If KZ is larger than one than the (KZ+ 1) full sigma levels are stored. Sigma 
is a terrain following coordinate related to the pressure. Defmed as: 

P top is the pressure at the model top. The standard P top is 80 mb. Data is 
stored on the half sigma level, layer 1 is average of full sigma height 1 and 
2, layer 2 is average of full sigma height 2 and 3, etc. The 21 "standard" 
full sigma levels are: 

1.0, 0.995, 0.987, 0.977, 0.96, 0.945, 0.925, 0.89, 0.84, 0.79, 
0.71, 0.62, 0.53, 0.44, 0.35, 0.27, 0.19, 0.12, 0.07, 0.03, 0.00 

Sigma = 1.0 is the surface and sigma = 0.0 is at the model top (80 mb). So 
the 20 "standard" half sigma levels where the data is, are: 

0.9975, 0.991, 0.982, 0.9685, 0.9525, 0.935, 0.9075, 0.865, 
0.815, 0.75, 0.665, 0.575, 0.485, 0.395, 0.31, 0.23, 0.155, 
0.095, 0.05, 0.015 

This corresponds to about 25 m above the surface to about 20 km above the 
surface at the highest layers. To get the actual heights you need to integrate 
the hydrostatic equation, which has temperature, pressure and humidity as 
input. Using the standard atmosphere we can give approximate ranges for 
the sigma levels as follows: 

9 



Sigma 
1 0.9975 
2 0.991 
3 0.982 
4 0.9685 
5 0.9525 
6 0.935 
7 0.9075 
8 0.865 
9 0.815 
1 0.75 
0 
1 0.665 
1 
1 0.575 
2 
1 0.485 
3 
1 0.395 
4 
1 0.31 
5 
1 0.23 
6 
1 0.155 
7 
1 0.095 
8 
1 0.05 
9 

U 0.015 

General: 

Table N.Half step Sigma layers for 10 kIn run: 

Pressure (mb) Height (m) 
1010 15 - 21 
1004 53 -77 
996 106 - 150 
983 190 - 270 
969 280 -410 
953 390 - 570 
927 560 - 820 
887 830 - 1200 
841 1200 - 1700 
780 1600 - 2300 

700 2200 - 3200 

617 3000 - 4300 

533 3800 - 5500 

449 4700 - 6900 

370 5800 - 8400 

295 6900 - 10000 

225 8200 - 12000 

169 9500 -14000 

127 11 000 - 16000 

94 12000 - 19000 

Description of the Output data section 

For each time output: the time, date, and all data is stored. For each LA file there is 
a header and then the output data section is repeated for each time period stored until 
the end of file. Different file-types store data at different frequencies. But all store 
a years worth of data in each file. 

List of Variables: 

XTIMEC 

IDATEX 

The time in minutes since the start of the original run. 

The date in YYJJJHH format. Where YY=Last two digits of the year, 
JJJ=Julian day, HH=Hour (Ie. 8236506 = year 1982, julian day 365 
(Dec/31) and hour (Universal time) = 06:00 UT. 
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SURFDATA The surface (or elevation) data array stored from IYO-IYF, JXO-JXF, and 1 
to KZ, and data-types I-NTYPES. 

Description of the BATS LA fIle data-types 

General: The BATS LA files correspond to the main driving variables for ZOOM, plus some 
variables added for initialization or comparison. 

List of Variables: 

T ground 

Tair 

EW-Wind 

This is the surface (snow or soil) skin temperature calculated using 
the "Force restore" method. 

Input to this calculation is the radiation balance (R), and a sub-soil 
temperature calculated at a depth of: 

Where Ksoil is the thermal conductivity of the soil (and/or snow 
layer) (m**2/sec) and TAU is the number of seconds in a day. 
Thermal conductivity of the soil depends both on the soil type and 
the soil moisture content. So this depth actually changes from 
location to location and changes in time as the soil moisture content 
changes. But, basically it is the depth at which diurnal variation is 
damped out and only longer time-scale variance is seen (around 10 
cm). 

Ground temperature is included as a comparison for the model and 
for initialization. 

This is the temperature of the lowest model sigma layer (usually 
sigma = 0.9975 or about 25 m above the surface). So it represents 
the temperature of the air averaged over an entire lO km grid square 
between the surface and the next closest full sigma level (usually 
0.995). To find the representative height of this layer you must 
integrate the hydrostatic equation to get the height of the layer (See 
the section on sigma for this expression). 

Air temperature is a driving parameter for zoom. 

This is the wind in the east direction (West is negative) for the 
lowest model sigma layer. To get these values the model data had to 
interpolate the values from the dot grid points (a grid with points 
half-way between four neighboring cross grid points) to cross grid 
points, take into account curvature of the earth from the projection 
and then rotate the vectors such that the E-W component is given 
rather than the model "u" component in the "X" direction of the map 
projection. 

The winds are a driving parameter for zoom. 
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NS-Wind 

Total Soil Water 

Snow 

Precipitation 

Conv. Precip. 

Upper Soil Water 

This is the wind in the north direction (South is negative) for the 
lowest model sigma layer. To get these values the model data had to 
interpolate the values from the dot grid points (a grid with points 
half-way between four neighboring cross grid points) to cross grid 
points, take into account curvature of the earth from the projection 
and then rotate the vectors such that the N-S component is given 
rather than the model "v" component in the "yu direction of the map 
projection. 

This is the soil water in the total soil column down to a 3 m depth. 
(Note the total soil layer includes the root-zone soil layer as it's 
highest portion.) To get the percent of saturation that this represents 
take the soil porosity for this soil texture class (given by the land-use 
type) and mulitply it by the depth of this layer (3 m). 

This is added for comparison and/or initialization. 

This is snow water equivalent for the precipitation that has fallen as 
.snow and hasn't melted as yet. BATS sets all precipitation that falls 
at a temperature below 1 degree Celsius as snow and everything 
above that mark as rain. 

This is added for comparison and/or initialization. 

This is total precipitation accumulated since the beginning of the 
model run in cm. It includes both the grid scale resolvable 
precipitation as well as the parameterized sub-grid scale resolvable. 

This is a driving parameter for zoom. 

This is convective precipitation accumulated since the beginning of 
the model run in cm. It only includes the parameterized sub-grid 
scale resolvable portion of the precipitation. Normally it is 
generated by the Fritsch and Chappell type closure scheme from the 
Grell Cumulus cloud sub-grid scale non-resolvable convective 
cumulus cloud parameterization scheme. 

This is a driving parameter for zoom. 

This is the amount of water in the soil in mm in the upper soil layer 
(10 cm depth). To get the percent of saturation that this represents 
take the soil porosity for this soil texture class (given by the land-use 
type) and mulitply it by the depth of this layer (10 cm). 

This is added for initialization and/or comparison. 

Visible SW radiation This is visible radiation in W/m**2 of the radiation reaching the 
surface in the band between 0.35 and 0.7 micrometers. Including 
direct and diffuse radiation. 

This is a driving variable for zoom. 
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SW incident This is total solar radiation in W Im**2 of the radiation reaching the 
surface in the band between 0.2 and 2.0 micrometers. Including 
direct and diffuse radiation. 

This is a driving variable for zoom. 

netSW This is net solar radiation in W/m**2 of the radiation absorbed by the 
surface in the band between 0.2 and 2.0 micrometers. Including 
direct and diffuse radiation. 

Humidity ground 

Humidity air 

Net LW radiation 

This is added for comparison. 

This is the mixing ratio of mass of water vapor to mass of dry air 
(Kg/Kg) for the surface layer. 

This is added for comparison in zoom. 

This is the mixing ratio of mass of water vapor to mass of dry air 
(KglKg) for the lowest model sigma layer (usually 0.9975 or about 
20 m above the surface). 

This is a driving variable for zoom. 

This is incident longwave radiation minus the longwave radiation 
released from the surface (proportional to Tg**4). 

This is added for comparison in zoom. 

Incident L W radiation Incident L W is the horizontallongwave radiation incident on the 
surface. It is the radiation at all wavelengths that is emitted 
from that atmosphere. 

This is a driving variable in zoom. 

Pressure ground This is the pressure at the model surface in Pascals. 

This is a driving variable in zoom. 

Diffuse visible rad. This is the diffuse component of the visible radiation between 0.35 
and 0.7 micrometers. 

This is a driving variable for zoom. 
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Root-zone soil water This is the amount of water in the soil column down to the root-zone 
soil level in mm. The depth of this layer depends on the vegetation 
class but varies between 1 to 2 meters (note the root-zone soil layer 
includes the upper layer soil layer as it's upper portion). 

General: 

Table V. 

1 = Crop [1 m] 
2 = Short Grass [1 m] 
3 = Evergreen Needle [1.5 m] 
4 = Deciduous Needle [1.5 m] 
5 = Deciduous Broad [2 m] 
6 = Evergreen Broad [1.5 m] 
7 = Tall grass [1 m] 
8 = Desert [1 m] 
9 = Tundra [1 m] 
10 = Irrigated Crop [1 m] 
11 = Semi-desert [1 m] 
12 = Glacier [1 m] 
13 = Swamp [1 m] 
14 = Lake [1 m] 
15 = Ocean [1 m] 
16 = Evergreen shrub [l m] 
17 = Deciduous shrub [1 m] 
18 = Mixed forest [2 m] 

Note: Although a value is given for Lake and Ocean the model doesn't really use 
these values. 

To get the percent of saturation that this represents take the soil porosity for this soil 
texture class (given by the land-use type) and mulitply it by the depth of this layer. 

This is added for initialization andlor comparison in zoom. 

Description of the ELEV LA file data-types 

This file contains the driving variables for zoom under the dynamic option. 
Primarily it is used to fmd the slope with elevation that each of the driving variables 
have. After fmding the slope each variable can more accurately be adjusted for 
elevation. This file is only stored every 6 hours so the slope must be considered 
constant or varying only linearly during this time period. 

List of Variables: 

Tair 

EW-Wind 

This is the temperature of the each respective model sigma layer (See the 
section on sigma to get the sigma levels). So it represents the temperature 
of the air averaged over an entire 10 kIn grid square between the nearest 
sigma layer. 

This is the wind in the east direction (West is negative) for the respective 
model sigma layer. To get these values the model data had to interpolate the 
values from the dot grid points (a grid with points half-way between four 
neighboring cross grid points) to cross grid points, take into account 
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NS-Wind 

curvature of the earth from the projection and then rotate the vectors such 
that the E-W component is given rather than the model "u" component in the 
"X" direction of the map projection. 

This is the wind in the north direction (South is negative) for the respective 
model sigma layer. To get these values the model data had to interpolate the 
values from the dot grid points (a grid with points half-way between four 
neighboring cross grid points) to cross grid points, take into account 
curvature of the earth from the projection and then rotate the vectors such 
that the N-S component is given rather than the model "v" component in the 
fly" direction of the map projection. 

Humidity air This is the mixing ratio of mass of water vapor to mass of dry air (Kg/Kg) 
for the respective model sigma layer. 

General: 

Description of the SURF LA file data-types 

This is the surface data that goes with the elevation data. It is included only to get 
the values that correspond with the ELEV files. All of this information is repeated 
in the BATS files but at a hourly basis rather than every 6 hours. 

List of Variables: 

Pressure ground 

Precipitation 

This is the pressure at the model surface in centibar. 

This is total precipitation accumulated since the beginning of the 
model run in cm. It includes both the grid scale resolvable 
precipitation as well as the parameterized sub-grid scale resolvable. 

Conv. Precip. This is convective precipitation accumulated since the beginning of 
the model run in cm. It only includes the parameterized sub-grid 
scale resolvable portion of the precipitation. Normally it is 
generated by the Fritsch and Chappell type closure scheme from the 
Grell Cumulus cloud sub-grid scale non-resolvable convective 
cumulus cloud parameterization scheme. 

General: 

Description of the RAD LA file data-types 

The RAD files keep track of some specialized information not normally used in 
Zoom, but useful for some advanced options. Cloud water and rain water is only 
included for the explicit option in RegCM2, which is the normal case for 10 km 
runs. 

List of Variables: 

Cloud Cover This is the fractional cloud cover at each sigma layer ranging from 0.0, for 
no clouds, to 1.0, for 100% coverage of the cloud over the grid celL The 
bottom 3 sigma layers are not allowed to have clouds. For the cumulus 
parameterization cloud cover is assumed to be 100% for 10 km runs. 

Cloud Water This is the mass mixing ratio of water that has condensed into cloud form. 
Over a grid cell without clouds it is zero and within a cloud will be higher. 
The units are KglKg. 
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Rain Water This is the mass mixing ratio of water that is now falling as precipitation. 
Because, a significant portion of the rain may evaporate as it falls the rain 
water is useful in adjusting the precipitation with elevation. The units are 
Kg/Kg. 
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ABSTRACT 

Utah State University (USU) and the Interdisciplinary Climate Studies (rCS) group at the National 
Center of Atmospheric Research (NCAR) have teamed up. Using NCAR's RegCM2 (Regional 
Climate Model version 2) model which includes a surface physics and hydrology model (BATS -­
Biosphere Atmosphere Transfer Scheme) we are producing a multi-year mesoscale climate 
sequence. These are historical 13 year simulations (December 1978 to April 1992) from nested 
climate models at three resolutions, T42 (the observational analysis of the European Center of 
Medium Range Weather Forecasting (2.81 x 2.81 degrees), 50 km and 10 km respectively. 
Without access to a super-computer we ported RegCM2 to our IBM-6000 and rndigo-2 work 
stations. However, running RegCM2 at 10 km resolution over a 400 km square grid for a 13 year 
sequence proved to be too CPU intensive, taking over 2 years of CPU time to process. 

Therefore, a parallel version of RegCM2 was developed by us to cut the CPU time by the number 
of available processors. A preliminary version has cut the time for 8 processors by four times, 
allowing a 13 year run to be done in 12 months. The current version we are developing will half 
the CPU time once again. 
Our method of parallelization was designed for capability on both a shared-memory multiple-CPU 
(such as our 8-CPU SGI Onyx System) or a distributed system of SGr Indigo's on an FDDI fiber 
optic ring operating up to 10 nodes at once. However, we found the model to be too tightly 
coupled to take advantage of a distributed system as it requires passing too high of an amount of 
information each time-step. 

Timing information for the model and an overview of the method of paraUelization will be 
presented by us, along with some of the hydrologic outputs of the model. We will also discuss the 
impact of a longer time series of mesoscale model output. 

Serial RegCM2 

A 15 year simulation of MM4 at the 10 km level will take nearly 26.5 months of CPU time. For a 
, - 50 km run with the Kuo scheme it is 11 months of CPU. 

r -

r -

Synopsis of MM4 code: 

MM4 main program: 
initialization 
do while ( xtime < timax ) 

if( input time) Input Be's 
tend ------ Model Dynamics. 

splitf ---- Split-explicit time 
Track days/date/time etc. 
if( output time) Output 

end do 
output Iclosing etc. 

integration. 

The TEND subroutine and it's children takes over 95 % of the CPU time. So it is 
most natural to work with it. 
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1END Subroutine (Model Dynamics): 
Initialization 
Decouple fIrst 4 flj" (longitude) slices put in temporary arrays. 
do j = 2, jx-I 

Calculate pressure,temperature,humidity and wind tendencies (time 
derivatives), horizontal and vertical diffusion, pressure gradient, horizontal 
and vertical advection (a gradient term multiplied by a wind term). 
Calculate forecast values for next time step. 
HOLTBL --- Holtslag PBL routine. (Which calls both BATS (every 360 
simulation seconds) and RAD every 30 simulation minutes). 
Decouple next "j" slice. 
Copy forecast values into current arrays, and current values into previous 
arrays. 

Juggle the temporary indices around. To allow for next "j" slice. 
end do 

Copy the last j slices from forecast array into current array and current array 
into previous array. 

bdyval ----- Boundary values. 
nconvp ----- Non-convective 
conrnas ----- Mass conservation check. 
solarI ----- Compute solar zenith angle. 

precipitation. 

The diffusion and horizontal advection routines are 4th order so they need j levels + or - 2 levels 
away from j level solving for. Holtslag PBL needs to have the previous j-slice calculated before 
doing the current j-slice and it needs to have the drag calculated from the BATS routine before it 
can calculate the PBL. Other routines just need current j level. 

Parallel RegCM2 

Because, the j-loop in TEND takes up most of the CPU (92% of the total computation) and as it 
provides a natural place to parallelize the code, we have worked at distributing this loop over each 
CPU. First machine solves j=I-5, next 6-10, etc. For initialization we must calculate the geo­
potential on the previous j-slice and the vertical wind. Also for the Holtslag PBL we must fIrst 
calculate the tendencies for temperature and water (vapor, cloud, and rain), and then run BATS to 
get the drag for the j-2 j slice. Then we calculate the temperature and water tendencies for the j - I 
j-slice and calculate the PBL for the j-I j-slice. At this point we can begin the j loop for the given 
node. We save the results for these previous 2 j-slices so that we don't have to recalculate them for 
the previous node. 

Because, this method does not parallelize the entire code it will not increase the speed directly 
proportional to the number of nodes but as given by Amadahl's Law: 

I 
F=---------percent -"----+ (100 - percent) 

#nodes 
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So for our case where the percent parallelized is 92% and the number of nodes is 4 we get 3.2 as 
our speedup. Now in actual runs the speed-up was 2.2. We believe the discrepency is due 
partially to the additional time taken for parallelization, having CPU's wait for resources, and 
problems with load balancing. 

Table of Run Times for 15-Year Climate Run 

Resolution Grid Size Machine Run-Time 
(km) (months) 

10 36x37x20 CrayYMP 3.5 

10 36x37x20 SGI indigo 30 

10 36x37x20 IBM 6000 25 

10 36x37x20 SGllndigo-2 25 

10 36x37x20 HP-750 50 

10 36x37x20 SGI Risc-8800 15 

10 36x37x20 SGI Onyx-l node 25 

10 36x37x20 SGI Onyx-2 nodes 16 

10 36x37x20 SGI Onyx-4 nodes 11 

10 36x37x20 SGI Onyx-8 nodes 8 

Fully Parallel RegCM2 

The fully parallel version of RegCM2 builds upon the previous version that only does the TEND j­
loop in paralleL Making the rest of the TEND subroutine parallel is not too difficult. Most of the 
routines are straight forward and the only difference is restricting the j loops. However, the 

, , SPLITF routine is more difficult. SPLITF adjusts the output of TEND us sing linear theory. 

r . 
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Distributed Re~CM2 

Distributed RegCM2 takes the fully parallel RegCM2 and distrubutes the work on totally seperate 
machines on a FOOl network. The problem here is that each node has to have information on the 
other nodes before proceding. So rather than doing computations we do data transfer. Because, 
of the complexities with the Holtslag PBL, the explicit moisture scheme, and the surface physics 
model (BATS) 1.7 MB of data has to be transfered for a 4 node system (for a 36x37x20 grid) each 
time step. As the number of nodes increases this amount increases and the timestep itself 
decreases. This means that the percent of time spent transfering data increases exponentially with 
the number of nodes. Thus, eventually curtailing any speedup by adding more CPU's. We show 
in our example estimates for a 4 node case. A four node case spends 15% of it's time transfering 
data, and a 6 node case spends 30% transfering data. This is about the practical limit unless you 
can allow unlimited traffic on your network. For some of the simplier options of RegCM2 this 
percentage is much smaller. So the distributed system is useful for a small number of nodes up to 
4 or 5, but with access to shared memory systems the time is much better spent. 
Distributed System transfer rates: 
Because, the CPU times for each time step are so short it is not necessarily cost effective to .transfer 
the data (approx. 3.22 MB) for each time step. The theoretical transfer rate is 10 MB/sec. 
However, tests show that realistically a much lower rate is expected. The results are shown below. 

TRANSFER RATE TEST RESULTS 

MBytes MB/sec MBytes MB/sec MBytes MB/sec 

.00002 .005 .8 5.03 1.8 4.68 

.001 .2 .9 5.26 1.9 4.66 

.01 2.0 1.0 5.29 2.0 4.52 

.1 3.70 1.1 5.26 3.0 4.39 

.2 3.57 1.2 5.17 5.0 4.38 

.3 3.30 1.3 5.14 -- --

.4 6.35 1.4 5.02 -- --

.5 11.11 1.5 4.89 -- --

.6 6.98 1.6 4.72 -- --

.7 4.96 1.7 4.72 -- --
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Load Balance: 

In tests with MM4 the load is fairly evenly divided among each j-slice. The CPU's that contain the 
boundary data will be unbalanced by up to about 10%, as they have additional calculations for the 
BC's while at the same time aren't calling BATS or CCM2 Radiation. But this is an acceptable 
level, this means that CPU's will only spinning for less than a second. Changing the way j-s are 
divided among the CPU's does not improve the load balance. Outside the boundaries the load is 
balanced to much less than 1 %. 

The biggest area of concern with the load balance is the jx that you choose for the run. You must 
choose ajx so that: 

Gx-3) I # nodes 

is an even number. Where jx is the number of grid points in the j (longitude) direction, and # 
nodes is the number of compute nodes (threads) that you want to use. 

Distributed Parallel version [4 nodes] (2.7 X speedup) 

Routine CPU (sec) Load Fraction Seconds Percent 
(1 pass) Balance called per step 

TEDJLOOP 6.412/4 1.2 1 1.923 74.5% 

BATS 0.725/4 1.1 1110 0.020 0.75% 

RAD 5.0/4 1.1 1/50 0.028 1% 

Input 0.093 1.0 1/600 0.0002 neg 

Input transfer 1.1MB 1.0 11600 0.0004 neg 
15 MBlsec 

Output 5.713 1.0 11600 0.0095 0.5% 

Out transfer 3.2 MB 1.0 11600 0.0013 neg 
14MB/sec 

BATS output 0.093 1.0 11100 0.0009 neg 

BATS output 0.11 MB 1.0 11100 0.0004 neg 
transfer 13MB/sec 

splitf 0.329/4 1.5 1 0.1235 I 4.75% I 

transfer 1.6MB 1.0 1 0.4 15.5% 
14MB/sec 

Other TEND 0.088/4 1.5 1 0.03 Q 1.25% 

Overhead 0.046 1.0 1 0.046 1.75% 
I 

Total CPU 2.586 100.0% 
Time [7.07 serial] 

per loop 
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Conclusions 

We have developed a preliminary version of parallel RegCM2 that opens up the capability to 
modeling 15 year climate sequences with a high resolution atmospheric model with doable run 
times on small machines. A fully parallel version of RegCM2 is also in the works that will 
decrease the run times even further. Having longer high resolution climate sequences will allow 
better regional and local scale assessments of GCM's and GCM doubled C02 runs than currently 
available. We believe this is imperitative to the understanding of the impacts of global climate 
change for the local decision makers trying to plan what impact a changing climate may have on 
their situation. We also believe that a model such as RegCM2 that runs in parallel on small 
machines is one of the most cost-effective ways of obtaining high resolution climate sequences. 
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The huge quantity of data generated by GeMs and regional hydro-meteorological models makes it 
difficult to evaluate the detailed features of the output of these models. Often, the primary variables 
of these runs are only evaluated as monthly, seasonal or annual means, while the secondary 
variables are seldom evaluated. To allow us to evaluate the port of the RegCM2 model to 
workstations, we developed a video display system for the data. The display system provided 
color scaled images for each of the model outputs at each time step. A clock symbol shows the 
passage of time as each data image is placed onto video tape. The tape can be played back to show 
the temporal and spatial range of variation of each variable. 

The Visual Images Data Display System (VIDDS) is controlled by a graphical control system that 
allows the choice of variables, the resolution, and speed of display. It also provides a choice of the 
type of data display. Data can be displayed on a terrain contour or a map overlay type background. 
The angle and orientation of the terrain painted data can be changed as desired. 

This poster will show a video demonstration of the display of 50 km data from RegCM2 in the 
western US from our historical comparison for the' period 1979-1981. The display also 
demonstrates the display on a nested 10 km resolution area in northern Utah. The model shows the 
range of temperature, precipitation, soil moisture, vegetative cover, and evaporation rates for the 
models domain. While the air temperatures and precipitation rates are reasonable, the display 
shows that, for particular time periods, the leaf temperatures and evaporation rates of the model in 
the complex terrain are not reasonable. A technical description of the VIDDS is provided. 

Technical Description 

VIDDS uses a Graphical User Interface (GUI) of "C" X-II Motif code produced by Builder-X to 
set up the fIles parameters to be plotted etc. The GUI then spawns the graphics plotting program 
which uses "C" and Silicon Graphics Inc. Graphics Language code (SGI GL) to plot the surface in 
3D as a triangular mesh interpolating between grid points with Lambert shading. The colors are 
picked using a color look -up table defmed by the user or picked using the minimum and maximum 
of the data array. 

Conclusion 

With the recent advances in graphical workstations we can now plot a time series of visual images 
of atmospheric model data in 3D and in real time. This method of viewing the model data can 
allow the researcher to understand details hidden by other methods. This method also allows a 
researcher to view all the data output by the model in a reasonable amount of time. This method 
can bring out deficiency's and model errors not noticed by other methods. In our case it has 
helped us to catch several errors in the model and better understand the dynamics of the model and 
the system. 

I 
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A NESTED MODEL CHAIN BETWEEN GCM SCALE AND RIVER FLOW: 

A Testbed For Vegetation. Erosion. and Water Yield Scaling Studies'. 

G.E. Bingham"", D.S. Bowles, E. Kruzel<. A.S. Umaye and J.P. Riley 

Utah State University 
Logan. UT. USA 

1. INTRODUCTION 

The interpretation of GCM indicated climate 
change (Mearns et aI •• 1990) at regional and local levels 
is complex due to subgrid scale effects that are ignored 
by the larger scale models. This is particularly evident in 
mountainous terrain. such as the western U.S., where 
whole mountain ranges are smoothed over at GCM 
scales. When attempting to apply GCM climatic data to 
vegetation and hydrologic studies. the short term 
variations in temperature and precipitation are often lost 
in climatic averaging. It is these fluctuations that provide 
the stresses that limit vegetative development arid cause 
extreme events. In this paper. we describe the 
development of a modeling system and database 
designed to allow us to study the accuracy of nested· 
regional model predictions and the scaling effects found 
in the models being developed to examine these issues •. 
A validation data base is also being developed that 
provides the basis for multi-year model to historical data 
intercompa risons in the Rocky Mountains. The climate 
modeling portion of this effort is a joint project with the 
Interdisciplinary Climate Systems Section (lCS-CGD). 
National Center for Atmospheric Research (NCAR). 
Boulder CO'. The system provides a physically based 
robust modeling system to link global. decade scale 
climate inputs to vegetation change and river basin flow 
studies. 

2. THE MODEL SYSTEM 
An overview of the Mountain Climate -

Hydrometeorology Model System (MCHS) is shown in 
Figure 1. The atmospheric portion of the system has its 
foundation in two well documented models, (RegCM2 
Giorgi, et. 1993) and BATS (Dickinson et al •• 1986). 
RegCM2 is nested to run at two resolutions. 50 and 10 
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funds provided by the Intermountain Research 
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Agriculture. 
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Bingham. Space Dynamics laboratory. Utah 
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Km. BATS provides surface inputs to RegCM2 at both 

Figure 1. Overview of MCHS. 

resolutions. Input to the current version of RegCM2 is 
either the T42 (2.81°) output of NCAR's CCM2 GCM or 
NCAR's archive of ECMWF data that has been formatted 
to match the CCM2 output. Data inputs to the model and 
the output file structure of the 50 Km and 10 Km model 
runs are shown in Figures 2 and 3. Model output is 
stored on an on-line mass storage device at the Space 
Dynamics Laboratory at USU. Super computer time to 
run nested model studies like those described here is 
expensive and difficult to acquire. We have modified the 
NCAR provided RegCM2 model 'to run on RISC 
workstations. but runtimes on even the latest versions 
limit detailed studies. A fully parallel version of RegCM2 
for multi-processor workstations has been completed 
(Kluzek et aI., 1994). This version reduces the run time 
requirements significantly. A one year 10 Km run 
(36x37x20 grid points) on an 8 processor Silicon 
Graphics Onyx requires about 12 days. The outputs of 
the nested RegCM2 model provide all of the radiation, 
wind. temperature, precipitation and soil moisture data 
required for detailed hydrometeorological and vegetation 
studies. 
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Figure 3. Output file structure of 10 Km. 

The interface between the atmospheric portion 

of the MCHS and the vegetation and hydrologic models 
is a USU developed model (Zoom). Zoom interpolates 
the RegCM2 data from the "smooth" surfaces of the 10 
Km model to the topographical scale desired for the next 
layer of models. Two versions of Zoom are now 
available. The first option provides single location time 
series data such as would be provided by a complex 
weather station. Our current single station option is used 
to drive a single point version of the BATS model. Some 
of the basic BATS surface types have been replac ed with 
conditions more suitable to western mountain surface 
types. A second single point model is being developed 
in cooperation with the U.S. Forest Service to provide a 
version of the WEPP soil erosion model (NSERL. 1991) 
for use in complex terrain .. The second Zoom option 
provides horizontally distributed output temporal data 
sequen ces to drive H RU or grid based models. 

Our hydrologic model (CVHM - Sikka, et al 
1993) is a modified version of the PRMS model, 
(Leavesley, 1983). The structure of CVHM is shown in 
Figure 4. CVHM operates at daily time steps using daily 
minimum and maximum temperatures, radiation and 
precipitation. Model outputs are surface and ground 
water flows, evaporation and transpiration, soil moisture 
at two levels, and leaf and air temperatures. The model 
uses a parameterized soil moisture leaf. conductance 
sub model to calculate transpiration as a function of soil 
moisture. radiation; humidity and temperature. When 
used in multiple year simulations, CVHM has the ability 
to annually adjust leaf area index based on cllmulative 
transpira tion. 

CVHM is an Hydrologic Response Unit (HRU) 
based model. requiring the input of HRU boundaries, 
vegetation type and leaf area index (LAI). This 
information is developed from DEM and landSat TM 
data. This process is time consuming and somewhat 
SUbjective. Optimization of this process, both in scale 
and procedure, is one of our initial research thrusts. 
Currently, water shed definition is accompli shed using the 
MIPS analysis system. Vegetation type and leaf area are 
derived using the MIPS system and landSat TM data. 
The TM data is sorted into vegetation classes using an 
automated, fuzzy classification scheme developed by 
Gunderson. et al.. (1992). The DEM and TMdata sets 
are then merged using a rule based system to provide 
the HRUs that allow CVHM to be applied across the 
region being studied. Runoff, both surface and 
subsurface, is collected into a river basin model which 
provides the routing and hydrograph calculations. 

3. DATABASE DEVELOPMENT - An Example 

Figure 5 shows an example application of 
MCHS. We are currently applying the MCHS to the 
western U.S. for the period 1979-1993. This is the period 
for which ECMWF global observation data exist. Using 
observed upper air data to constrain RegCM2 should 
allow the output data to be compared with recorded 
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Figure 4. An example application of MCHS. 

Figure 5. The structure of CVHM. 

surface climate data The 50 Km resolution regional 
model domain includes all of the western U.S. Two local 
(10 Km) regions are also being modeled for this period. 
Tha first area to be campi eted covers the Bear River 
drainage in Wyoming, Idaho and Utah; the second will 
center on northern Idaho. Hydrologic and vegetative 
response studies are being conducted on the Weber 
River basin in north-central Utah. The Weber is a sub 
watershed in the Bear River drainage. Our intent is to 
eventually expand the study to include the whole Bear 
River basin. 

To examine the fidelity of the RegCM2 model 
output, a historic climate data base (which includes the 
NOAA Coop, RAWS and Snotel data for the region) has 
been collected and quality controlled. This data set is 
currently being gridded and adjusted for terrain effects 
(Jensen, 1994). Model and climate data 
intercomparisons are planned to take two forms. Zoom 
model outputs are being developed for the location of 
each of the existing weather stations. In addition a 
gridded data set based on historical observations is being 
prepared to allow direct comparison with the gridded 
model data This two way comparison will allow us to 
test the assumpt ions in the model to local data 



adjust ment procedu res. 

During the development. CVHM and the Weber 
River System Model were tested using some simplified 
but fairly standard climate change scenarios (Sikka et aI., 
1994). The hydrographs for these conditions are shown 
in Figure 6. Sase data for the tests were scaled historical 
climate data sets. The conditions include +/. 10% 
changes in precipitation coupled with 4° and 6° 
temperature increases. All of the test simulations show 
significant decreases in flow and in the timing of the 
peak. If actually experienced. these changes would have 
significant impact on the population and agriculture which 
has developed along the Wastatch Mountains in Utah. 
Before these kinds of assessments work their way into 
planning documents, more robust studies using much 
more defensible data inputs need to be conducted. 
MCHS was designed to provide the foundation for these 
types of studies. 
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Figure 6. Hydrographs for CVHM and Weber River 
System Model output under simplified climate change 
scenarios. 

4. CONCLUSIONS 
The Mountain Climate Hydromet eorological 

modeling System was designe d to provide a testbed to 
study the scaling effects and models being proposed to 
scale GCM climate change data for regional and local 
studies. Developing the climate model and vegetation 
data sets for this testbed has been a major effort. Now 
that this effort is almost complete. detailed studies of both 
the models and the scaling assumptions for a wide range 
of subjects can be easily studied. The current round of 
watershed scale surface studies now underway at USU 
cover easily historically based 14 year period. December 
1978 to April 1993. We hope to expand our efforts to 
include studies of vegetation response, erosion and 

hydrologic responses using existing single point and 
hydrologic response unit based models. Model outputs 
are being compared with a combined point data set. 
based on NOAA COOP and USDNSCS SNOTEL 
stations as well as SSMII and GOES image data. We 
anticipate that many additional cooperative stUdies will 
benefit from this extensive modeling effort. 
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MEASUREMENTS AND MODELING OF SNOW ENERGY BALANCE AND 
SUBLIMATION FROM SNOW 

Abstract 

David G. Tarboton 
Utah Water Research Laboratory, 

Utah State University, 
Logan, Utah 84322-8200 

Telephone: 801-797-3172; Fax: 801-797-3663; email: dtarb@cc.usu.edu 

Snow melt runoff is an important factor in runoff generation for most Utah rivers and a 
large contributer to Utah's water supply and periodically flooding. The melting of snow is driven 
by fluxes of energy into the snow during warm periods. These consist of radiant energy from the 
sun and atmosphere, sensible and latent heat transfers due to turbulent energy exchanges at the 
snow surface and a relatively small ground flux from below. The turbulent energy exchanges are 
also responsible for sublimation from the snow surface, particularly in arid environments, and 
result in a loss of snow water equivalent available for melt. The cooling of the snowpack resulting 
from sublimation also delays the formation of melt runoff. This paper describes measurements and 
mathematical modeling done to quantify the sublimation from snow. Measurements were made at 
the Utah State University drainage and evapotranspiration research farm. I attempted to measure 
sublimation directly using weighing lysimeters. Energy balance components were measured, by 
measuring incoming and reflected radiation, wind, temperature and humidity gradients. 

An energy balance snowmelt model was tested against these measurements. The model 
uses a lumped representation of the snowpack with two state variables, namely, water equivalent 

and energy content relative to a reference state of water in the solid phase at OOC. This energy 
content is used to determine snowpack average temperature or liquid fraction. The model is driven 
by inputs of air temperature, precipitation, wind speed, humidity and solar radiation. The model 
uses physically based calculations of radiative, sensible, latent and advective heat exchanges. An 
equilibrium parameterization of snow surface temperature accounts for differences between snow 
surface temperature and average snowpack temperature without having to introduce additional state 
variables. This is achieved by incorporating the snow surface thermal conductance, which with 
respect to heat flux is equivalent to stomatal and aerodynamic conductances used to calculate 
evapotranspiration from vegetation. Melt outflow is a function of the liquid fraction, using Darcy's 
law. This allows the model to account for continued melt outflow even when the energy balance is 
negative. 

The purpose of the measurements presented here was to test the sublimation and turbulent 
exchange parameterizations in the model. However the weighing lysimeters used to measure 
sublimation suffered from temperature sensitive oscillations that mask short term sublimation 
measurements. I have therefore used the measured data to test the models capability to represent 
the overall seasonal accumulation and ablation of snow. 
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Description of Experiment 

The experiment reported here was conducted at the USU drainage and evapotranspiration 
research farm in Cache Valley. Instrumentation in place is designed for the study of 
evapotranspiration from agricultural lands, but for this study was utilized for the study of winter 

snow cover. The instrumentation consisted of two 1 m2 weighing lysimeters and meteorological 
and energy balance equipment The weighing lysimeters are 1 x 1 x 1 m metal boxes embedded 
flush with the surface and filled with soil, vegetated with grass similar to the surrounding 
agricultural field. Load cells (underneath in the case of one lysimeter and at the comers for the 

other) record the weight of soil, grass, soil moisture and snow over the 1 m2 area. Meltwater 
infiltrates into the lysimeter so does not result in a weight change. Changes in weight are due only 
to addition or removal of mass from the surface, which in the case of snow can be due to 
precipitation, condensation, sublimation and wind drifting. 

Meteorological and energy balance instrumentation used is listed in table L 

Table 1; Meteorological Instrumentation 

2 Net Radiometers (Fritchen type Q6 and Q4) installed 1m above the snow surface. 
2 Lycor pyranometers that record solar radiation. One was pointed down to estimate albedo. 
1 Eppley pyranometer to record incident solar radiation. 
2 Everest Interscience model 4000 Infrared surface temperature sensors. 
4 Anemometers at heights 0.6, 0.9, 1.4 and 2.4 m above the ground surface. 
4 Viasala temperature and relative humidity sensors at height 0.58, 0.90. 1.44, 2.57 m above the 

ground surface. 
2 REBS Ground heat flux plates 
Thermocouple ladder. This consisted of 14 copper/constantine thermocouples at the following 

levels: -0.075, -0.025, 0, 0.05. 0.125. 0.2, 0.275, 0.35, 0.425, 0.5, 0.575, 
0.65, 0.725, 0.8 m, from the ground surface. The first two thermocouples were 
buried and the third placed on the ground. The remainder were suspended on 
fishing line strung between two upright posts. 

Heated (unshielded) tipping bucket rainfsnow gage. 
Wind direction sensor 

Two campbell scientific 21X dataloggers powered by a deep cycle 12 volt battery charged by a 
solar panel were used to take measurement readings every minute and record 30 minute averages 
for output 

The dataloggers were downloaded during biweekly visits at which time the sensors were 
also inspected and cleared of snow and grime buildup. During these visits, snow depth and water 
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equivalent was measured at eight locations using an Adirondack snow tube sampler. To guard 
against the danger of bridging in the snow between snow over the lysimeters and surrounding 
snow which would distort the weights and inferred sublimation a plastic batten and saw was used 
to saw the snow between the lysimeter and surrounding. This was done from a ladder supported 
between two trestles over the lysimeter so as not to disturb the snow on or near the lysimeter. This 
procedure was only partly successful as we did notice some abrupt changes in lysimeter weight 
that coincided with the sawing. We also found that the lysimeter weight measurements had a 
diurnal temperature sensitivity that precluded using them for short term sublimation measurements. 
They still provide an overall measurement of snow accumulation. 

The USU drainage and irrigation experimental farm is located in Cache Valley near Logan, 
Utah, USA (41.6· N, 111.6· W, 1350m elevation). The weather station and instrumentation are in 
a small fenced enclosure at the center of a large open field. There are no obstructions to wind in 
any direction for at least 500m. Cache valley is a flat bottomed enclosed valley surrounded by 
mountains that reach elevations of 3000m. During winter periods of· settled weather strong 
temperature inversions accompanied by very cold (-20 ·C) nighttime temperatures and night and 
morning fog develop. Unsettled stormy periods serve to break the inversion. During the period of 
this experiment the ground was snow covered from November 20, 1992 to March 22, 1993. Air 
temperatures ranged from -23 ·C to 16 ·C and there was 190 mm of precipitation (mostly snow, 
but some rain). The snow accumulated to a maximum depth of 0.5 m with maximum water 
equivalent of 0.14 m. Table 2 gives a chronology of the events and measurements. The 
instrumentation was only fully functional for the latter half of the winter, which will be the focus of 
the analysis. 

Table 2. ChmnQhlg!l. 

Emm. Th Day .Enmt 
11/20/92 -41 First snowfall 6 mm. 
11/20/92 1113193 -41 to 13 Several snowstorms resulting in an accumulation of 86 mm of 

water equivalent and depth of 400 mm. 
1113193 13 Supplementary equipment (thermocouple ladder and air 

temperature and humidity profile) is finally functional. 
1117/93 17 to 19 Datalogger battery failure, some data lost. 
1118/93 1/25/93 18 to 25 Period of unsettled weather (12 mm precipitation). 
1/25/93 25 Heated precipitation gage and downward pointing pyranometer 

installed and functional. 
1126/93 218193 26 to 39 Inversion and fog. 
218/93 2125/93 39 to 56 Period of unsettled weather (45 mm precipitation). 
2/26/93 3/9193 57 to 68 Inversion and fog. 
3/10/93 3/11193 69 to 70 Rain and snow (20 mm precipitation). Highest water equivalent 

accumulation of 139 mm was recorded just prior to this event 
which initiated melt 

3/11193 3/14/93 70 to 73 Clear warm weather. Melt continues. 
3115193 3/16/93 74 to 75 Light rain (2 mm). 
3/17/93 3118193 76 to 77 Heavy rain (18.5 mm) that caused considerable snowmelt 
3119/93 3/22/93 78 to 81 Remaining snow melted rapidly. 
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Energy Balance Snowmelt Model 

The energy balance model used (Chowdhury et al., 1992; Bowles et al., 1992; Bowles et 
al., 1994; Tarboton et al., 1995) was developed for purposes of erosion prediction and water 
balance modeling. The snowpack is characterized by two primary state variables, water 

equivalent, W Em], and energy content, U, [kJ/m2]. The state variable, energy content U, is 
defined relative to a reference state of water at O°C in the ice (solid) phase. U greater than zero 
means the snowpack (if any) is isothermal with some liquid content and U less then zero can be 
used to calculate the snowpack average temperature, T, roC]. Energy content is defined as the 
energy content of the snowpack plus a top layer of soil w,ith depth De Em]. This provides a simple 
buffering against numerical instabilities when the srtowpack is shallow, as well as simple 
approximations of frozen ground and melting of snow falling on warm ground. We discuss below 
the choice of De and the role it plays in the model. 

The model is designed to be driven by inputs of air temperature, T a [OC]; wind speed, V 

(m/s]; relative humidity, RH; precipitation, P [m/hr]; incoming solar Qsi and longwave QIi 

radiation [kJ/m2/hr]; and ground heat flux Qa [kJ/m2/hr] (taken as 0 when not known) at each time 
1::1 

step. When incoming solar radiation is not available it is estimated as extra terrestrial radiation 

(from sun angle) times an atmospheric transmission factor, Tr, estimated from the daily 
temperature range using the procedure given by Bristow and Campbell (1984). When incoming 

longwave radiation is not available it is estimated based on air temperature, the Stefan-Boltzman 

equation and a parameterization of air emissivity due to Satterlund (1979) adjusted for cloudiness 
using Tr. 

Given the state variables U and W, their evolution in time is determined by solving energy 

and mass balance equations. 

(1) 

(2) 

In the energy balance equation terms are (all in kJ/m2/hr): Qsn' net shortwave radiation; Qn, 

incoming longwave radiation; Qp' advected heat from precipitation; Qg' ground heat fllL"'\.; Qle' 

outgoing longwave radiation; Qh' sensible heat flux; Qe' latent heat flux due to 

sublimation/condensation; Qm' advected heat removed by meltwater. In the mass balance equation 

(all in mlhr of water equivalent) terms are: P r' rainfall rate; P s snowfall rate; Mr , meltwater 

outflow from the snowpack; E, sublimation from the snowpack. Many of these fluxes depend 

functionally on the state and input driving variables. We elaborate on the parameterization of these 

functional dependencies below. Equations (1) and (2) form a coupled set of first order, nonlinear 
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ordinary differential equations. They can be summarized in vector notation as: 

d: = E(x, driving variables) 
(3) 

where X = (U, W) is a state vector describing the snowpack. With X specified initially, this is an 
initial value problem. A large variety of numerical techniques are available for solution of initial 
value problems of this form. Here we have adopted a Euler predictor-corrector approach (Gerald, 
1978). 

X' = X + At EIX, driving variables) 
1 1 (4) 

E(x, driving variables) + E(X:, driving variables) 
X 1 =X. +At 1 2 

1+ 1 (5) 

where At is the time step, Xi refers to the state at time ~ and Xi+ 1 refers to the state at time 

~+ 1 =ti+At. This is a second order flnite difference approximation, with global error proportional 

to At2 (Gerald, 1978, p257). 

Parameterization 

Depth averaged temperature - T: The snow and interacting soil layer average 
temperatures are obtained from the energy content and water equivalent, relative to O·C ice phase. 

IfU <0 T=U/(pw WCs+PgDeCg) All solid phase (6) 

If 0< U < Pw Whf T = O·c. Solid and liquid mixture (7) 

IfU > Pw W hf T= 
U - Pw Wh

f 
All liquid (8) 

PgDe Cg + Pw WCw 

In the above the heat required to melt all the snow water equivalent is Pw W hf [kJ] where hf is the 

heat of fusion [333.5 kJ kg-I] and U in relation to this determines the solid-liquid phase mixtures. 

The heat capacity of the snow is Pw W Cs [kItC] where Pw is the density of water [1000 kg m-3] 

and Cs the speciflc heat of ice [2.09 kJ kg- 1 ·C-l]. The heat capacity of the soil layer is P g De Cg 

[kItc] where Pg is the soil density [=1700 kg m-3] and Cg the specific heat of soil [=2.1 kJ kg-1 

·C-l]. These together determine T when U < O. In practice, unless we allow ponded water 

(which we don't) W will always be' 0 in (8). The heat capacity of liquid water, Pw W Cw' where 

Cw is the specific heat of water [4.18 kJ kg- 1 ·C-l], is however retained in (8) for numerical 
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consistency during time steps when the snowpack completely melts. 

Heat flow in snow and soil is governed by Laplace's equation. The depth of penetration of 
changes in surface temperature can be evaluated from the expression (Rosenberg, 1974); 

(9) 

where Rs is the range of temperature oscillation at the surface, Rz the range of temperature 

oscillation at depth z, P the period of oscillation, and a the thermal conductivity. For soil a is 

typically in the range 0.004 to 0.006 cm2/s. Figure 1 shows RjRs versus z for a = 0.005 cm2/s 
for various periods. This shows that for oscillations less than one week the effect at 40 cm is 
damped to less than 30% and even for monthly oscillations is still damped 50% at 40 cm depth. 
This suggests using De = 40 cm in our model. Rosenberg (1974) also suggests this as an effective 

depth. The state variable U represents energy content above this level. The ground heat flux 
represents heat transport at this depth and is therefore a long term average. Diurnal oscillating 
ground heat fluxes above this depth are absorbed into U, the energy stored in the snow and soil 

above depth De' 
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Figure 1. Depth of penetration of temperature fluctuations into soil with a = 0.005 cm2/s. 

Net Shortwave Radiation, Qsn: This is calculated as 

(10) 

where Albedo, A, is calculated based on the age of the snow surface using a parameterization 
described by Dickinson et al. (1993). For shallow snowpacks (depth less than 0.1 m) the albedo 
is interpolated between the bare ground value (0.25) and snow value. 
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Outgoing Longwave Radiation, Qle: Snow is essentially a black body, with 

emissivity Es = 0.99. Outgoing radiation is 

(11) 

where (j is the Stefan Boltzmann constant [2.07 x 10-7 kJ m-2 hr- l K-4] and the superscript "abs" 

. Tabs. d. 
In S In lcates that this is absolute temperature [K]. 

Snow fall accumulation and heat with precipitation: Measured precipitation rate, 
P, is partitioned into rain, Pr, and snow, Ps' (both in terms of water equivalent depth) using the 

following rule based on air temperature, T a, (U.S. Army Corps of Engineers, 1956) 

P r = PTa ~ T r = 3 °C 

Pr = P(Ta-Tb)/(Tr-Tb) Tb<Ta<Tr (12) 

Pr = 0 Ta::;; Tb = - 1 oC 

Ps=P-Pr 
where Tr is a threshold air temperature above which all precipitation is rain and Tb a threshold air 

temperature below which all precipitation is snow. 
The temperature of rain is taken as the greater of the air temperature and freezing point and 

the temperature of snow the lesser of air temperature and freezing point. The advected heat is the 
energy required to convert this precipitation to the reference state (O·C ice phase). 

(13) 

Turbulent fluxes, Qh, Qe' E: Sensible and latent heat fluxes between the snow 

surface and air above are modeled using the concept of flux proportional to temperature and vapor 
pressure gradients with constants of proportionality, the so called turbulent transfer coefficients or 
diffusivity a function of windspeed and surface roughness. Considering a unit volume of air, the 

heat content is Pa Cp Ta and the vapor content Pa q, where Pa is air density (determined from 

atmospheric pressure and temperature), Cp air specific heat capacity [1.005 kJ kg- l oC-l], and q 

specific humidity [kg water vapor per kg air]. Heat transport towards the surface, Qh [kJ/m2/hr] 

is given by: 

(14) 

where Kh is heat conductance [m/hr] and Ts is the snow surface temperature. Vapor transport 
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away from the surface (sublimation), Me [kglhr] is: 

Me = Ke P a (Cis - q) (15) 

where % is the surface specific humidity and Ke the vapor conductance [mJhr]. 

By comparison with the usual expressions for turbulent transfer in a logarithmic boundary 
layer profile (Male and Gray, 1981; Anderson, 1976; Brutsaert, 1982; Calder, 1990) for neutral 
condition, one obtains the following expression: 

(16) 

where V is wind speed [m/hr] at height z [m]; Zo is roughness height at which the logarithmic 

boundary layer proflle predicts zero velocity [m]; and k is von Karman's constant [0.4]. The 
subscript n denotes that these are conductances in neutral conditions. Recognizing that the latent 
heat flux towards the snow is: 

(17) 

and using the relationship between specific humidity and vapor pressure and the ideal gas law one 
obtains: 

(18) 

where es is the vapor pressure at the snow surface snow, assumed saturated at Ts. and calculated 

using a polynomial approximation (Lowe, 1977); ea is air vapor pressure. Rci is the dry gas 

constant [287 J kg-l K-l] and hv the latent heat of sublimation [2834 kJ/kg]. The water equivalent 

depth of sublimation is: 

(19) 

When there is a temperature gradient near the surface. buoyancy effects may enhance or dampen 
the turbulent transfers. This can be quantified in terms of the Richardson number or Monin­
Obukhov length. We had hoped that the lysimeter measurements made here would have provided 
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data to allow us to detennine the effect of stability on snow sublimation. However since that did 
not work out the results presented here use neutral buoyancy. 

Snow Surface Temperature, Ts: Since snow is a relatively good insulator, Ts is in 
general different from T. This is accounted for using an equilibrium approach that balances energy 
fluxes at the snow surface. Heat conduction into the snow is calculated using the temperature 
gradient and thermal diffusivity of snow, approximated by: 

Q :::: K: P s Cs (T s - TJ/Ze = Ks P s Cs (T s - TJ (20) 

where K: is snow thermal diffusivity (m2 hr 1] and Ze. (m] an effective depth over which this 

thermal gradient acts. The ratio K:!Ze is denoted Ksand termed snow surface conductance 

analogous to the heat and vapor conductances. A value of Ks is obtained by assuming a depth, Ze 

equal to the depth of penetration of a diurnal temperature fluctuation calculated from equation (9) 
(Rosenberg, 1974). Ze is chosen so that RzlRs is small. In fact Ks is used as a tuning parameter, 

with this calculation used to defme a reasonable range. Then assuming equilibrium at the surface, 
the surface energy balance gives. 

(21) 

where the dependence of Qh, Qe' and Qle on Ts is through equations (14), (18) and (11). 

Analogous to the derivation of the Penman equation for evaporation the functions ofTs in 
this energy balance equation are linearized about a reference temperature, T* and the equation is 
solved for Ts: 

Tabs = Q,n +Qli+Q
P 
+KT:

b
'PaCp-O.622Kh" Pa( e,(T*)-ea-T.ab,t. )lPa+3E,aT.

ab
'\p,C,T ab'K, 

s abs3 
PsCs Ks+ K Pa Cp + 0.622 ~ K hv P/Pa + 4 £s 0" T* 

(22) 

where ~ = des/dT.' This equation is used in an iterative procedure with an initial estimate T* = T a' 

in each iteration replacing T* by the latest Ts. The procedure converges to a final Ts which if less 
than freezing is used to calculate surface energy fluxes. If the final Ts is greater than freezing it 
means that the energy input to the snow surface cannot be balanced by thermal conduction into the 
snow. Surface melt will occur and the infiltration of meltwater will account for the energy 
difference and Ts is then set to O·C. 
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Meltwater Outflux, Mr and Qm: The energy content state variable U determines the 
liquid content of the snowpack. This, together with Darcy's law for flow through porous media , 
is used to determine the outflow rate. 

M =K S*3 
r sat (23) 

where Ks at is the snow saturated hydraulic conductivity [== 160 m hr-1 J and S * is the relative 
saturation in excess of water retained by capillary forces. This expression is based on Male and 
Gray (1981 p400 eqn 9.45). S* is given by: 

S* = liquid water volume - .capillary re:ention = (' i _ L )/( Pw _ Pw _ L ) 
pore volume - capillary retentIon 1 - L

f 
C Ps Pi C (24) 

where Lf=U/(PwhfW) denotes the mass fraction of total snowpack (liquid and ice) that is liquid, 

Lc [0.05J the capillary retention as a fraction of the solid matrix water equivalent, and Pi the 

density of ice [917 kg m-3]. 
This melt outflow is assumed to be at O·C so the heat advected with it, relative to the solid 

reference state is: 

(25) 

Model parameters 

Apart from known physical constants and readily estimable quantities the model has 
adjustable parameters listed in Table 3. The values used were taken from previous work with the 
model calibrated against data collected at the Central Sierra Snow Laboratory. These results 
therefore present an independent check of the model in a different setting. 

Table 3. Adjustable parameter values 

Parameter 

Surface aerodynamic roughness 
Surface conductance 
Snow density 
Saturated hydraulic conductivity 
Capillary retention fraction 

Notation 

Zo 
Ks 
Ps 
Ksat 
Lc 
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Value 

0.002 m 
0.015 mlhr 
450 kg m-3 

160 m!hr 
0.05 



Results and Discussion 

Figure 2 gives the measured lysimeter weights. measured snow water equivalent and 
accumulated precipitation. The measured snow water equivalent values shown are the average 
from the 8 snow core measurements made each visit. The individual water equivalent 
measurements usually varied within a range of 10 to 20% from this average. This shows general 
agreement between weight accumulation on the lysimeters. snow accumulation and precipitation. 
Figure 3 compares model and measured snow water equivalent for the model run from day 26 to 
the end of melt Two model runs are shown. one with the model driven by measured net radiation 
and the other with the model driven by incoming solar radiation. The fIrst run bypasses the albedo 
and outgoing longwave radiation calculations so serves only to test the models sensible and latent 
heat flux. components. The second run is a more realistic check on overall model performance. 
For both runs the model was initialized with the measured day 26 water equivalent of 0.104 m and 
energy content based on the average temperature of thermocouples in the snow and soil. This 

energy content was. -1136 kJ/m2. These results show that the model does reasonably well at 
representing snow accumulation and melt. The second model run. with solar radiation as the 
primary energy input. was used for the remainder of the comparisons in this paper. 

Figure 4. shows modeled and measured snow (and soil) energy content The measured 
energy content was estimated from the measured water equivalent (linearly interpolated between 
measurements) and snow and soil temperatures averaged from the thermocouple ladder 
measurements. There is obviously a large discrepancy between modeled and measured energy 
content early on. and given this it is surprising how well the model does at representing other 
aspects of the snow accumulation and melt processes. The lowest energy content on day 39 would 
predict an average snow and soil temperature of -14 °c. This is well below the observed snow 
temperatures shown on fIgure 5. These discrepancies indicate that the model loses too much 
energy during cold periods. suggesting that the snow surface conductance may be too large. It 
also indicates that temperature fluctuations do not penetrate to the full interacting soil layer depth. 
De (0.4 m] suggesting that perhaps De should be reduced. After day 70 (March 20) the model 

energy content is above zero due to the liquid water content of the snow. This is the melt period. 
The measured energy. estimated from thermocouple measurements of snow and soil temperatures. 
does not account for liquid water in the snow. 

Figures 6a-f present detailed results for the period from January 26 to February 7 (day 26 
to 38) during which there was a strong temperature inversion and no measurable precipitation, 
although there was condensation and accumulation of frozen fog. During this period the snow 
depth was 0.4 m. The sensor heights are given with respect to the ground so the lowest vapor 
pressure and temperature sensors were only 0.2 m above the snow surface. The lysimeters (only 
lysimeter 2 is shown in fIg 6a, but lysimeter 1 was similar) recorded a diurnal oscillation in weight 
that is I believe an effect of the cold temperatures on the electronics or load cell system. The 
oscillations which correlate well with air temperature amount to 2 mm of water equivalent. Based 
on net radiation measurements the net radiation could only supply energy to sublimate a ma.'Ximum 
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of 0.6 mmlday (if all energy goes to sublimation) in this period. The oscillations therefore mask 
any sublimation signal and preclude the use of these lysimeter measurements for the study of short 
tenn sublimation. Figure 6b shows the model water equivalent on an expanded scale where you 
can see that it does go through a very small diurnal oscillation (up to 0.1 mmJday) with nighttime 
condensation and daytime sublimation. This oscillation is out of phase with the vapor pressure 
measurements which increase during the day then drop at night. This suggests a recycling process 
where the snow surface layer is sublimated during the day then redeposited during nighttime 
cooling. There is a net accumulation from day 32 to day 33 when the vapor pressures (figure 6d) 
are high. Then on day 34 there is a period of relatively strong wind (figure 6c) and low vapor 
pressure (figure 6d) that results in a relatively large modeled sublimation and qrop in water 
equivalent (figure 6b). Gradients in vapor pressure (the difference between the lines on figure 6d) 
coincide with modeled condensation and sublimation periods (figure 6b). Figure 6f compares 
model and measured infrared snow surface temperatures. This indicates. that the equilibrium 
procedure for calculation of snow surface temperature works reasonably well. 

Deta:iled results for the melt period (March 19, day 69 to March 23, day 82) are shown in 
figures 7 a-h. The onset of melt was triggered by the 20 mm of precipitation, rain and snow mix on 
day 69 and 70. Following the precipitation strong winds and low humidity (vapor pressure, figure 
7g) induces sublimation in the model over days 71 and 72 (figure 7h). There is some suggestion 

of a downward trend (implying sublimation) in the lysimeter trace on figure 7a. With this 
sublimation and cooler air temperatures there is minimal melt modeled on days 71 and 72. 
Freezing of the snow surface is well modeled as indicated by the model and measured snow 
surface temperatures (figure 70. Warmer weather and higher humidity from day 73 on are 
characterized by positive sensible heat (higher temperatures at the upper sensor, fig 7e) and 
condensation (higher vapor pressure at the higher sensor, fig 7g) which both add energy to the 
snowpack, which consequently melts rapidly. The horizontal dashed line on figure 7g is 6.1 mb, 
the saturation vapor pressure of water over ice at freezing point. Vapor pressures higher than this 

imply a downward vapor pressure gradient which will result in condensation. Rain on day 76 
makes melting even more rapid. Figure 7a indicates that over the whole season, according to the 
model, net sublimation was only a small fraction (the difference between the dashed lines) of the 
snow mass. This was due to the persistent inversions and high humidity associated with valley 

fog. 
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Figure 4. Comparison of measured and modeled energy content of the snow and top 0.4 m of 
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Conclusions 

An experiment to quantify the sublimation and energy balance of snow was conducted the 
winter of 1992/93 at the Utah State University drainage and evapotranspiration research farm near 

Logan, Utah, USA. The experiment was not altogether successful in that large temperature 
dependent oscillations in the weight recorded by the lysimeters precluded the measurement of 
sublimation. However the meteorological variables measured were used to test an energy balance 

snowmelt modeL Comparisons against measured snow water equivalent and measured snow 
surface temperatures indicate satisfactory performance of the model in representing these aspects of 
the snow accumulation,. energy and melt processes. Deficiencies in the models representation of 
the snow energy content were found and will need to be addressed in future work. Future work 

with this data set could also attempt to remove the temperature dependence from the lysimeter 
measurements and obtain estimates of measured sublimation. There is also the information 
necessary to quantify heat flux, somewhat tenuously, as the residual from net radiation, ground 

heat flux and changes in energy content of the snow. This could then be compared to temperature 
gradients and modeled heat flux based on wind. It may also be possible to obtain useful 

information and learn something about the turbulent transfers of sensible and latent heat fluxes 
from the analysis of gradient information. This will however be difficult as the air temperature and 
humidity differences measured were small and approach the resolution limit of the sensors. 

Overall the improvement of our understanding of turbulent processes over snow will require more 

study and more precise measurements. 
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A Spatially Distributed Energy Balance Snowmelt Model 

DAVID G. TARBOTON, TANVEER G. CHOWDHURY 
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THOMAS H. JACKSON 

Turner Collie & Braden, Houston, Texas, USA 

Abstract This paper describes an energy balance snowmelt model developed for the prediction of 

rapid snowmelt rates responsible for soil erosion and water input to a distributed water balance 

model. The model uses a lumped representation of the snowpack with two state variables, namely, 

water equivalent and energy content relative to a reference state of water in the ice phase at OOC. 

This energy content is used to determine snowpack average temperature or liquid fraction. This 

representation of the snowpack is used in a distributed version of the model with each of these state 

variables modeled at each point on a rectangular grid corresponding to a digital elevation model. 

Inputs are air temperature, precipitation, wind speed, humidity and radiation at hourly time steps. 

The model uses physically based calculations of radiative, sensible, latent and advective heat 

exchanges. An equilibrium parameterization of snow surface temperature accounts for differences 

between snow surface temperature and average snowpack temperature without having to introduce 

additional state variables. Melt outflow is a function of the liquid fraction, using Darcy's law. 

This allows the model to account for continued outflow even when the energy balance is negative. 

A detailed description of the model is given together with results of tests of individual components 

and the complete model against data collected at the Central Sierra Snow Laboratory, California; 

Reynolds Creek Experimental Watershed, Boise Idaho; and at the Utah State University drainage 

research farm, Logan Utah. The testing includes comparisons against melt outflow collected in 

lysimeters and melt colIectors, surface snow temperatures collected using infrared temperature 

sensors and depth and water equivalent measured using snow core samplers. 

INTRODUCTION 

Snowmelt is a significant surface water input of importance to many aspects of hydrology 

including water supply, erosion and flood control. Snowmelt is driven primarily by energy 
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exchanges at the snow-air interface. The model described here was developed initially to predict 

the rapid melt rates responsible for erosion. It has also been used to provide the spatially 

distributed surface water input in a water balance study. In developing a new snowmelt model our 

goal was to incorporate ideas from the many existing models and parameterize the processes 

involved in as simple, yet physically correct a manner as possible. We hoped to develop a simple, 

parsimonious, physically based model that could be driven by readily available inputs and applied 

anywhere with no (or minimal) calibration. The striving for simplicity led us to parameterize a 

snowpack in te.rms of lumped (depth averaged) state variables so as to avoid having to model the 

complex processes that occur within a snowpack. Wehave still however attempted to capture 

important physical differences between bulk (depth averaged) properties and the surface properties 

that are important for surface energy exchanges. Due to space limitations a detailed literature 

review is not given. We have relied heavily on an understanding of snowmelt processes gleaned 

from Gray and Male (1981) and the descriptions of existing models (Anderson, 1973; 1976; 

Morris, 1982; Leavesley et at., 1983). In what follows we first give a detailed description of the 

model. We then describe the data sets we used to test the model and show results comparing 

model calculations to observations. 

MODEL DESCRIPTION 

The snowpack is characterized by state variables, water equivalent, W [m], energy content, U, 

[kJ/m2] and the age of the snow surface which is only used for albedo calculations. These are, we 

believe, sufficient to characterize the snowpack for the surface water inputs of interest. The state 

variable, energy content U, is defined relative to a reference state of water at OCC in the ice (solid) 

phase. U greater than zero means the snowpack (if any) is isothermal with some liquid content and 

U less then zero can be used to calculate the snowpack average temperature, T, [cq. Energy 

content is defmed as the energy content of the snowpack plus a top layer of soil with depth De [m]. 

We discuss below the choice of De and the role it plays in the model. 

The model is designed to be driven by inputs of air temperature, Ta [OC]; wind speed, V 

[m/s]; relative humidity, RH; precipitation, P [mihr]; incoming solar Qsi and longwave Qli 

radiation [kJ/m2/hr]; and ground heat flux Qcr [kJ/m2ihr] (taken as 0 when not known) at each time 
o 

step. Time steps of 0.5, I and 6 hours have been used in data comparisons here. When incoming 

solar radiation is not available it is estimated as an extra terrestrial radiation (from sun angle and 
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solar constant) times an atmospheric transmission factor. Tr. estimated from the daily temperature 

range using the procedure given by Bristow and Campbell (1984). When incoming long wave 

radiation is not available it is estimated based on air temperature, the Stefan-Boltzman equation and 

a parameterization of air emissivity due to Satterlund (1979). adjusted for cloudiness using Tr. 

Given the state variables U and W. their evolution in time is determined by solving energy 

and mass balance equations. 

(1) 

(2) 

In the energy balance equation terms are (all in kJ/m2/hr): Qsn' net shortwave radiation; Qli' 

incoming longwave radiation; Qp• advected heat from precipitation; Qg' ground heat flux; Qle. 

outgoing longwave radiation; Qh' sensible heat flux; Qe' latent heat flux due to 

sublimatiOn/condensation; Qm' advected heat removed by meltwater. In the mass balance equation 

(all in mlhr of water equiValent) terms are: Pro rainfall rate; Ps snowfall rate; Mr. meltwater 

outflow from the snowpack; E. sublimation from the snowpack. Many of these fluxes depend 

functionally on the state and input driving variables. We elaborate on the parameterization of these 

functional dependencies below. Equations (1) and (2) form a coupled set of fIrst order. nonlinear 

ordinary differential equations. They can be summarized in vector notation as: 

d: = ECX. driving variables) 
(3) 

where X = (U, W) is a state vector describing the snowpack. With X specifIed initially. this is an 

initial value problem. A large variety of numerical techniques are available for solution of initial 

value problems of this form. Here we have adopted a Euler predictor-corrector approach (Gerald, 

1978). 

X' = X + ~t E(x, driving variables) 
1 1 (4) 

ECK, driving variables) + ECX', driving variables) 
X 1 =x. + ~t 1 2 

1+ 1 (5) 
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where fl.t is the time step, Xi refers to the state at time ~ and Xi+ 1 refers to the state at time 

11+ 1 =ti+~t. This is a second order finite difference approximation, with global error proportional 

to ~t2 (Gerald, 1978, p257). Numerical instabilities sometimes occur under melting conditions 

when the snowpack is shallow due to the nonlinear nature of the melt outflow parameterization. 

To deal with this we compare Xi+ 1 to XI and if they differ by more than a specified tolerance 

(0.025 m for W and 2000 kJ/m2 for U) iterate up to four times setting XI to Ai+1 then 

recalculating Xi+ 1 at each iteration. If convergence is still not achieved we take the solution that 

would keep the liquid fraction of the snow constant. Following I describe how each of the 

processes involved in equations (1) and (2) are paramete~zed. 

Depth averaged temperature • T 

The snow and interacting soil layer average temperatures are obtained from the energy content and 

water equiValent, relative to O·C ice phase. 

If U < 0 T = U/(pw W Cs + Pg De Cg) All solid phase (6) 

If 0 < U < Pw W hf T = O·C. Solid and liquid mixture (7) 

U - Pw Wh
f 

T = ----~---=----
PgDeCg+pwWCw 

All liquid (8) 

In the above the heat required to melt all the snow water equivalent is Pw W hf [lcJ] where hf is the 

heat of fusion [333.5 kJ kg-I] and U in relation to this determines the solid-liquid phase mixtures. 

The heat capacity of the snow is Pw W Cs [kJtc] where Pw is the density of water [1000 kg m-3] 

and Cs the specific heat of ice [2.09 kJ kg-1 ·C-l]. The heat capacity of the soil layer is Pg De Cg 

[kJtC] where P g is the soil density and Cg the specific heat of soiL These together determine the T 

when U < O. The heat capacity of liquid water, P w W Cw' where Cw is the specific heat of water 

[4.18 kJ kg- 1 ·C-l], is included in (8) for numerical consistency during time steps when the 

snowpack completely melts. 

The parameter De is intended to quantify the depth of soil that interacts thermally with the 

snowpack. Heat flow in snow and soil is governed by Laplace's equation. The depth of 

penetration of changes in surface temperature can be evaluated from the expression (Rosenberg, 

1974): 
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(9) 

where Rs is the range of temperature oscillation at the surface, Rz the range of temperature 

oscillation at depth z, P the period of oscillation, and a the thermal conductivity. For soil a is 

typically in the range 0.004 to 0.006 cm2/s. Fig. 1 shows RjRs versus z for a = 0.005 cm2/s for 

various periods. This shows that for oscillations less than one week the effect at 40 cm is damped 

to less than 30% and even for monthly oscillations is still damped 50% at 40 cm depth. This 

suggests using De = 40 cm in our model since the time scale of interest is the seasonal 

accumulation then melting of snow. The state variable U represents energy content above this 

leveL The ground heat flux represents heat transport at this depth and is therefore a long term 

average. Oscillating, high frequency, ground heat fluxes above this depth are absorbed into U, the 

energy stored in the snow and soil above depth De' This procedure provides a simple 

approximation of the effects of frozen ground, or snow falling on warm ground. 

Radiation 

Net shortwave radiation is calculated as 

(10) 

where Albedo, A, is calculated based on the age of the snow surface using a parameterization due 

to Dickinson et al. (1993). The age of the snow surface is retained as a state variable, and is 

updated each time step, dependent on snow surface temperature and snowfall. When the 

snowpack is shallow (depth z < h = 0.1 m) the albedo is taken as r Abg + (l-r) A where 

r = (l-zlh)e-zl2h. This interpolates between the snow albedo, A, and bare ground albedo, Abg' 

with the exponential term approximating the exponential extinction of radiation penetration of 

snow. 

Outgoing longwave radiation is 
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(11) 

where £$ is emissivity. () the Stefan Boltzmann constant [2.07 x 10-7 kJ m-2 hr-1 K-4] and the 

superscript "abs" in ~bS indicates that this is absolute temperature [KJ. 

Snow fall accumulation and heat with precipitation 

Measured precipitation rate, P, is partitioned into rain,Pr• and snow, Ps• (both in terms of water 

equivalent depth) using the following rule based on air temperature. T a. (U.S. Army Corps of 

Engineers, 1956) 

Pr = P 

Pr = P(Ta -Tb)/(Tr - Tb) 

Pr = 0 

Ps = (p - Pr) F 

Ta~ Tr =3 °C 

Tb <Ta <Tr 

T as; Tb = - 1 oC 

(12) 

where Tr is a threshold air temperature above which all precipitation is rain and Tb a threshold air 

temperature below which all precipitation is snow. The accumulation of snow is sometimes 

subject to considerable wind redistribution with drifts forming on lee slopes. We account for this 

in the model through a snow drift factor, F, dependent on location. Ideally F needs to be related to 

topography.· In the application to Reynolds Creek. F was estimated by calibrating the snow water 

, . equivalents obtained from the snow model (with F = 1) at each cell. W m. against the observed 

values. Wo. The discrepancy between observations and predictions over an interval between 

measurements is attributed to drifting and suggests F = 1 + (JI 0 - W m)1P s where Psis the gage 

snowfall (calculated from P with F = 1) during the interval. Values ofF less than one correspond 

" . to locations of depletion or wind scour. This approach models drifting which actually occurs after 

snowfall as concurrent with snowfall. The calibration of F assumes that the snowmelt model 

c. correctly accounts for all other processes (melt, sublimation, condensation etc.) affecting the 

, - accumulation and ablation of snow water equivalent. Further details are given in Jackson (1994). 

The temperature of rain is taken as the greater of the air temperature and freezing point and 

the temperature of snow the lesser of air temperature and freezing point. The advected heat is the 

L. energy required to convert this precipitation to the reference state (O·C ice phase). 

L. 6 



(13) 

Sensible and latent heat fluxes between the snow surface and air above are modeled using the 

concept of flux proportional to temperature and vapor pressure gradients with constants of 

proportionality, the so called turbulent transfer coefficients or diffusivity a function of windspeed 

and surface roughness. Considering a unit volume of ,air, the heat content is Pa Cp Ta and the 

vapor content Pa q, where Pa is air density (determined from atmospheric pressure and 

temperature), Cp air specific heat capacity [1.005 kJ kg-1 oC-l], and q specific humidity [kg 

water vapor per kg air]. Heat transport towards the surface, Qh [kJ/m2/hr] is given by: 

(14) 

where Kh is heat conductance [m/hr] and Ts is the snow surface temperature. Vapor transport 

away from the surface (sublimation), Me [kglhr] is: 

Me = Ke Pa (qg - q) (15) 

where qg is the surface specific humidity and Ke the vapor conductance [mIhr]. 

By comparison with the usual expressions for turbulent transfer in a logarithmic boundary 

layer profile (Male and Gray, 1981; Anderson, 1976; Brutsaert, 1982) for neutral condition, one 

obtains the following expression: 

(16) 

where V is wind speed [m/hr] at height z [m]; Zo is roughness height at which the logarithmic 

boundary layer profile predicts zero velocity [m]; and k is von Karman's constant [0.4]. 

Recognizing that the latent heat flux towards the snow is: 
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(17) 

and using the relationship between specific humidity and vapor pressure and the ideal gas law, one 

obtains: 

(18) 

where es is the vapor pressure at the snow surface snow, assumed saturated at Ts, and calculated 

using a polynomial approximation (Lowe, 1977); ea is air vapor pressure, R{} is the dry gas 

constant [287 J kg-1 K-l] and hv the latent heat of sublimation [2834 kJlkg]. The water equivalent 

depth of sublimation is: 

(19) 

When there is a temperature gradient near the surface, buoyancy effects may enhance or dampen 

the turbulent transfers. This can be quantified in terms of the Richardson number or Monin­

Obukhov length. Adjustments to the neutral transfer coefficients to account for these effects exist 

and were tried based on the temperature difference between the air and snow surface. However we 

found that it was quite common that large temperature differences and low wind speeds resulted in 

unreasonable correction factors, beyond the range for which they had been developed, so for the 

purposes of the results presented here we have used neutral transfer coefficients. 

Snow Surface Temperature, T s 

Since snow is a relatively good insulator, Ts is in general different from T. This is accounted for 

using an equilibrium approach that balances energy fluxes at the snow surface. Heat conduction 

into the snow is calculated using the temperature gradient and thermal diffusivity of snow, 

approximated by: 
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Q = 1C Ps Cs (fs - T)/Ze = Ks Ps Cs (fs - 1) (20) 

where 1C is snow thermal diffusivity [m2 hr-l] and Ze [m] an effective depth over which this 

thermal gradient acts. The ratio 1CIZe is denoted Ks and termed snow surface conductance 

analogous to the heat and vapor conductances. A value of Ks is obtained by assuming a depth, Ze 

equal to the depth of penetration of a diurnal temperature fluctuation calculated from equation (9) 

(Rosenberg, 1974). Ze should be chosen so that R/Rs is small. Here Ks is used as a tuning 

parameter, with this calculation used to define a reasonable range. Then assuming equilibrium at 

the surface, the surface energy balance gives. 

(21) 

where the dependence of Qh, Qe, and Qle on Ts is through equations (14), (18) and (11). 

Analogous to the derivation of the Penman equation for evaporation the functions ofTs in 

this energy balance equation are linearized about a reference temperature, T*. and the equation is 

solved for Ts: 

abs ( * *abs .) *abs
4 

abs 
abs Qsn+Qu+Qp+KTa PaCp-0.622KhyPaes(f )-ea-T tl lPa+3£sdT +psCsT Ks 

T =------~~------~--------~----------~------------------
s abs3 

PsCs Ks+ K Pa Cp + 0.622 tl K hy PalP a + 4 £s crT* 

(22) 

where tl = desldT. This equation is used in an iterative procedure with an initial estimate T* = T a, 

in each iteration replacing T* by the latest T s. The procedure converges to a final T s which if less 

than freezing is used to calculate surface energy fluxes. If the final Ts is greater than freezing it 

means that the energy input to the snow surface cannot be balanced by thermal conduction into the 

snow. Surface melt will occur and the infiltration of meltwater will account for the energy 

difference and Ts is then set to O·C. 

l\tleltwater Outflux, Mr and Qm 

The energy content state variable U determines the liquid content of the snowpack. This, together 
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with Darcy's law for flow through porous media, is used to detennine the outflow rate. 

M =K S*3 
r sat (23) 

where Ksat is the snow saturated hydraulic conductivity and S* is the relative saturation in excess 

of water retained by capillary forces. This expression is based on Male and Gray (1981 p400 eqn 

9.45). S * is given by: 

S* = liquid water volume - ,capillary re:ention = (l_ L )/( Pw _ Pw _ L ) 
pore volume - capillary retenuon 1 - L cPs P, C (24) . . f 1 

where Lf=U/(PwhfW) denotes the mass fraction of total snowpack (liquid and ice) that is liquid, 

Lc [0.05] the capillary retention as a fraction of the solid matrix water equivalent, and Pi the 

density of ice [917 kg m-3], This melt outflow is assumed to be at O·C so the heat advected with 

it, relative to the solid reference state is: 

(25) . 

Forest Cover 

The presence of vegetation. especially forests. significantly influences energy exchanges at the 

snow surface. A forest canopy reduces windspeed, thus reducing sensible and latent heat 

transfers. It also affects the radiation exchanges. The penetration of radiation through vegetation 

has been widely studied (Sellers et aI., 1986; Verstraete, 1987a; 1987b; Verstraete et al.. 1990; 

Dickinson et al., 1993), and models developed that discretize the canopy into layers treating the 

energy balance of each layer separately (Bonan, 1991). Here we avoid these complexities and 

adopt a pragmatic parameterization modeled after the representation of snowmelt used by the 

WEPP winter routines (Young et al., 1989; Hendrick et al., 1971). Forest cover is 

parameterized by the canopy density parameter Fc, representing the canopy closure fraction 

(between 0 and 1). Windspeed, and therefore the corresponding heat and vapor fluxes are reduced 

by a factor (l-0.8Fc). Radiative fluxes Qsn. Qli and Qle in equation (1) are reduced by a factor (1-

Fc). Adjustments are also made to the radiation terms in the calculation of snow surface 
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temperature (equation 22). 

DATA 

In this paper data collected at the Central Sierra Snow Laboratory (CSSL); Utah State University 

drainage and evapotranspiration research farm and Reynolds Creek Experimental Watershed are 

used to calibrate and test the model. 

Central Sierra Snow Laboratory 

The CSSL located I km east of Soda Springs. California, measures and archives comprehensive 

data relevant to snow. It is at latitude 39-19'N and at elevation 1100m. We obtained the 

meteorological and snow observation data for the winter of 1985 - 1986. The meteorological data 

is reported each hour and consists of temperature. radiation. humidity, precipitation. and wind 

measurements at two levels in a 40 :x 50 m clearing and in a mixed conifer fir forest with 95% 

forest cover. Only data from the clearing are used here. Snow depths and water equivalent are 

measured daily (except on weekends) and eight lysimeters record melt outflow each hour. We 

used the temperature, precipitation, radiation (incoming solar and net), humidity and wind 

measurements to drive our model and compared model output to measurements of snow water 

equivalent, melt outflow and snow surface temperature (infrared sensor). 

USU drainage and evapotranspiration research farm 

An experiment to measure snow energy balance and sublimation from snow the winter of 1992-

1993 is described more fully by Tarboton • 1994 #1669]. Data from this work included 

measurements of snow water equivalent. snow surface temperature and the meteorological 

variables necessary to drive our modeL 

Reynolds Creek Experimental Watershed 

Upper Sheep creek is a 26 ha catchment within the semi-arid Reynolds creek experimental 

watershed. Snowmelt is the main hydrologic input and its areal distribution is heavily influenced 
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by wind induced drifting. Detailed descriptions of the various features of the area are given in 

Flerchinger et al. (1992) and references therein. Snow water equivalent measurements are made 

biweekly (as weather permits) on a 30.48 m (100 ft) grid over the watershed. A digital elevation 

model (OEM) was constructed from a 1:1200 map with 0.61 m (2 ft) contour interval developed 

from low level aerial photography. The OEM grid was constructed to coincide with the grid used 

for field measurements and provided slope and aspect inputs to the model radiation calculations. 

Fig. 2 shows the topography and grid over Upper Sheep creek together with locations of the 

instrumentation. Data from the winters of 1985 - 1986 and 1992 - 1993 were used in this study to 

test the model running in a distributed mode at each gr:i.d cell. Snow melt outputs were used as 

hydrologic inputs for a water balance study (Jackson, 1994; Tarboton et al., 1995). 

RESULTS 

The model was calibrated against the CSSL data for the winter 1985 - 1986. The energy balance 

and overall accumulation and ablation of the snowpack is governed primarily by surface energy 

exchange processes. The adjustable parameters involved in these are Zo and Ks' which were 

adjusted to obtain a match between water equivalent, modeled and observed (shown in Fig. 3). 

and snow surface temperatures. modeled and observed (Fig. 4) with the model driven by the 

measured net radiation input. We then used measured incoming solar radiation to drive the model 

and found that the melt is delayed (Fig. 3). Discrepancies were analyzed and attributed to 

differences in daytime net radiation. primarily affected by albedo. The albedo parameterization 

(Dickinson et al .• 1993) has parameters Avo = 0.95 and Anir = 0.65 which represent the albedo 

of new snow in the visible and infrared ranges. Avo was reduced to 0.85 to match the daytime net 

radiation when compared to measured CSSL 1985 - 1986 data (Fig. 5). The resulting snow water 

equivalent comparison (Fig. 3) indicates that some early season melt is not modeled resulting in 

slight over accumulation, but the main melt is well modeled. fu all results except the line indicated 

on Fig. 3. Avo = 0.85 was used. Melt outflow rate was compared to the average from the eight 

melt lysimeters. with Ksat adjusted to get a good fit. Results are shown in Fig. 6. 

Table 1 lists tb,e adjustable parameters that were calibrated against the CSSL data. Table 2 

lists the remaining model parameters which were held fixed at their nominal values. The model 

was tested against the data from Reynolds Creek and USU drainage and evapotranspiration 

research farm without further adjustment of parameters. The Reynolds Creek study applied the 
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model to each 30.48 x 30.48 m grid cell over Upper Sheep creek (Fig. 2). The drift factor to 

adjust snow input was estimated from the observed grided snow data for 1985-1986 (Jackson, 

1994). Fig. 7 shows the drift factors and Fig. 8 compares measured and modeled spatial 

distribution of snow about halfway through the snowmelt phase in 1992-1993. Due to space 

limitations not all of the comparisons are shown. They indicate that the model correctly represents 

the spatial accumulation and melt patterns. Fig. 9 compares measured and modeled snow water 

equivalent at the USU drainage and evapotranspiration research farm. 

CONCLUSIONS 

The tests described have shown that this simple, depth averaged, mass and energy balance 

snowmelt model is able to capture the essential physics of the snow accumulation and melt 

processes and provide distributed hydrologic inputs. Using parameter values calibrated against 

CSSL data the model perfonned well when tested at other locations. This suggests that the model 

is transportable and parameter values listed may be acceptable for wider application. However 

further testing against additional data is necessary. In particular we need to tes~ the 

parameterization of forest cover and further evaluate the parameterization of albedo and the effect of 

atmospheric stability on turbulent fluxes. 

The model is available electronically from David Tarboton (dtarb@cc.usu.edu). 

Acknowledgements Thank you Bruce McGurk for access to the CSSL data, and Keith Cooley 

. and the USDA ARS Northwest Watershed Research Center staff for access to and collaboration in 

Reynolds Creek. This work was funded in part by the US Department of the Interior, Geological 

Survey, under USGS Grant No. 14-08-0001-G2ll0, and the US Department of Agriculture, 

Forest Service joint venture agreement INT-92660-RJV A. The views and conclusions are those of 

the authors and should not be interpreted as necessarily representing the official policies, either 

expressed or implied, of the U.S. Government 

REFERENCES 

Anderson, E. A (1973) National Weather Service River Forecast System-Snow Accumulation and 

Ablation Model. NOAA Technical Memorandum NWS HYDRO-17. U.S. Dept of Commerce. 

13 



Anderson, E. A. (1976) A Point Energy and Mass Balance Model of a Snow Cover. NOAA 

Technical report NWS 19, U.S. Department of Commerce. 

Bonan, G. B. (1991) A Biophysical Surface Energy Budget Analysis of Soil Temperature in the 

Boreal Forests ofInterior Alaska. Water Resources Research. 27(5): 767-781. 

Bristow, K. L. and Campbell, G. S. (1984) On the Relationship Between Incoming Solar 

Radiation and the Daily Maximum and Minimum Temperature. Agricultural and Forest 

Meteorology. 31: 159-166. 

Brutsaert, W. (1982) Evaporation into the Atmosphere, Kluwer Academic Publishers. 

Dickinson, R. E., Henderson-Sellers, A. and Kenne<iY, P. J. (1993) Biosphere-Atmosphere 

Transfer Scheme (BATS) Version Ie as Coupled to the NCAR Community Climate Model. 

NCARffN-387+STR, National Center for Atmospheric Research. 

Flerchinger, G. N., Cooley, K. R. and Ralston, D. R. (1992) Groundwater Response to 

Snowmelt in a Mountainous Watershed. Journal of Hydrology. 133: 293-311. 

Gerald, C. F. (1978) Applied Numerical Analysis, 2nd Edition, Addison Wesley, Reading, 

Massachusetts. 

Gray, D. M. and Male, D. H. ed. (1981) Handbook of Snow, Principles, processes, management 

& use. Pergamon Press. 

Hendrick, R. L., Filgate, B. D. and Adams, W. M. (1971) Application of Environmental Analysis 

to Watershed Snowmelt Journal of Applied Meteorology. (10): 418-429. 

Jackson, T. H. R. (1994) A Spatially Distributed Snowmelt-Driven Hydrologic Model applied to 

the Upper Sheep Creek Watershed. Ph.D Thesis, Civil and Environmental Engineering, Utah 

State University. 

Leavesley, G. H., Lichty, R. W., Troutman, B. M. and Saindon, L. G. (1983) Precipitation­

runoff modeling system--Users manual:. Water resources Investigations Report 83-4238, U.S. 

Geological Survey. 

Lowe, P. R. (1977) An Approximating Polynomial for the Computation of Saturation Vapour 

Pressure. Journal of Applied Meteorology. 16: 100-103. 

Male, D. H. and Gray, D. M. (1981) Snowcover Ablation and Runoff. Chapter 9 in Handbook of 

Snow, Principles, Processes. Management and Use, Edited by D. M. Gray and D. H. Male, 

Pergammon Press, p.360-436. 

Morris, E. M. (1982) Sensitivity of the European Hydrological System snow models. 

Hydrological Aspects of Alpine and High Mountain Areas, Proceedings of the Exeter 

14 



Symposium, IAHS Publ no 138,221-231. 

Rosenberg, N. J. (1974) Microclimate The Biological Environment, John Wiley & Sons, Inc. 

Satterlund, D. R. (1979) An Improved Equation for Estimating Long-wave Radiation From the 

Annosphere. Water Resources Research. 15: 1643-1650. 

Sellers, P. J., Mintz, Y., Sud, Y. C. and Dalcher, A. (1986) A simple biosphere model (SiB) for 

use with general circulation models. Journal of the Atmospheric Sciences. 43(6): 505-531. 

Tarboton, D. G., Jackson, T. H., Liu, J. Z., Neale, C. M. U., Cooley, K. R. and McDonnell, J. 

1. (1995) A Grid Based Distributed Hydrologic Model: Testing Against Data from Reynolds 

Creek Experimental Watershed. Preprint submitted, for presentation at AMS Conference on 

Hydrology, 15-20 January, Dallas, Texas. 

U.S. Army Corps of Engineers (1956) Snow Hydrology, Summary report of the Snow 

Investigations. , U.S. Army Corps of Engineers, North Pacific Division, Portland, Oregon. 

Verstraete, M. M. (1987a) Radiation Transfer in Plant Canopies: Scattering of Solar Radiation and 

Canopy Reflectance. Journal of Geophysical Research. 93(08): 9483-9494. 

Verstraete, M. M. (1987b) Radiation Transfer in Plant Canopies: Transmission of Direct Solar 

Radiation and the Role of Leaf Orientation. Journal of Geophysical Research. 92(D9): 10985-

10995. 

Verstraete, M. M., Pinty, B. and Dickinson, R. E. (1990) A physical model of the bidirectional 

reflectance of vegetation canopies, 1. Theory. Journal of Geophysical Research. 95(08): 

11755-11765. 

Young, R. A., Benoit, G. R. and Onstad, C. A. (1989) Snowmelt and frozen soil. Chapter 3 in 

USDA Water Erosion Prediction Project, Hillslope profile model documentation, Edited by L. 

J. Lane and M. A. Nearing, NSERL Report #2, USDA-ARS National Soil Erosion Research 

Laboratory, West Lafayette, Indiana, 47907. 

15 



Figure Captions 

Figure 1. Depth of penetration of temperature fluctuations into soil with a. = 0.005 cm2/s. 

Figure 2. Upper Sheep Creek topography and instrumentation. 

Figure 3. Comparison between observed and modeled snow water equivalent, CSSL. 

Figure 4. Comparison between observed and modeled snow suIface temperatures, CSSL. 

Figure 5. Comparison between observed and modeled n~t radiation, CSSL. 

Figure 6. Comparison between observed and modeled melt outflow rate, CSSL. 

Figure 7. Drift factor from Jackson (1994). Contours at 0.5, 0.9, 1.5,2.5.4 and 6. 

Figure 8. Observed and modeled spatial distribution of snow at Upper Sheep creek, April 8, 

1993. 

Figure 9. Observed and modeled snow water equivalent, USU research farm. 
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Table 1. Adjustable parameter recommended values. 

Parameter Notation Calibrated Value 

Surface aerodynamic roughness 

Surface conductance 

Saturated hydraulic conductivity 

New snow visible albedo 

Table 2. Snowmelt model fIxed parameters. 

Parameter 

Ground Heat Capacity 

Density of Soil Layer 

Snow density 

Capillary retention fraction 

Emissivity of Snow 

Temperature above which precipitation is rain 

Temperature below which precipitation is snow 

Wind! Air temperature measurement height 

Soil Effective Depth 

Bare ground albedo 

Albedo extinction depth 

17 

0.005 m 

0.02 mlhr 

20mlhr 

0.85 

Notation Reference Value 

Cg 2.09 kJ kg-I °C-l 

pg 1700 kg m-3 

ps 450 kg m-3 

Lc 0.05 

£5 0.99 

Tr 3°C 

Ts -rc 
z 2m 

De DAm 

Abg 0.25 

h 0.1 m 
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APPENDIX4A 

Multivariate Nonparametric Resampling Scheme for Generation 
of Daily Weather Variables 

Balaji Rajagopalan, Upmanu Lall, David G. Tarboton and David S. Bowles 

Abstract 

A nonparametric resampling technique for generating daily weather variables at a site is 

presented. The method samples the original data with replacement while smoothing the empirical 

conditional distribution function. The technique can be thought of as a smoothed conditional 

Bootstrap and is equivalent to simulation from a kernel density estimate of the multivariate 

conditional probability density function. This improves on the classical Bootstrap technique by 

generating values that have not occurred exactly in the original sample and by alleviating the 

reproduction of fine spurious details in the data. Precipitation is generated from the nonparametric 

wet/dry spell model as described in Lall et. al. (1995). A vector of other variables (solar radiation, 

maximum temperature, minimum temperature, average dew point temperature and average wind 

speed) is then simulated by conditioning on the vector of these variables on the preceding day and 

the precipitation amount on the day of interest. An application of the resampling scheme with 30 

years of daily weather data at Salt Lake City, Utah, USA is provided. 
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1. INTRODUCTION 

Daily weather variations influence agricultural and engineering management decisions. Crop 

yields and hydrological processes such as runoff and erosion are very sensitive to weather. 

Recognizing the inherent variability in climate, it is often necessary to assess management scenarios for 

a number of likely input sequences. Stochastic models are consequently useful for simulating weather 

scenarios. Such models need to simulate sequences that are representative of the data. While there is a 

substantial literature for rainfall simulation and for other variables one at a time, only a few 

"multivariate" models have been developed. 

In this paper we develop and exemplify nonparametric procedures for resampling a vector of 

daily weather variables, such that selected lag ° and lag 1 dependence characteristics are preserved. 

Dependence is defined in terms of joint or conditional probabilities, rather than correlation. 

This work is an off shoot of the ongoing Water Erosion Prediction Project (WEPP) of the 

United States Department of Agriculture (USDA). WEPP, is a key model for soil and forest 

conservation studies. WEPP, includes a Climate Generator (CLIGEN) and the work presented here 

intends to improve it. Hillslope erosion is driven largely by precipitation and a suite of other weather 

variables. Hence, the main objective is to generate weather sequences which will be used by WEPP to 

estimate hillslope erosion. In this study, we chose a set of five daily variables (Solar Radiation 

(SRAD), Maximum temperature (TMX), Minimum temperature (TMN), A vg. Wind speed (WSPD) 

and A vg. Dew point temperature (DPT) in addition to Precipitation (P), that are of interest for erosion 

prediction. Most of these weather variables are sensitive to precipitation. Solar radiation, dew point 

temperature, maximum temperature and minimum temperature are more likely to be below normal on 

rainy days than on dry days, while the wind speed may be above normal on rainy days than on dry 

days. Consequently precipitation is chosen as the driving variable of the models developed so far. 

Typically (see Jones et al. '1972, Nicks and Harp 1980, Richardson 1980), daily precipitation is 

generated independently and the other variables are generated by conditioning on precipitation events 

(i.e. whether a day is wet or dry). 

Throughout this paper we denote the historical time series of the five weather variables chosen 

above as [z]mkj (m=l, .. ,NY, k = 1, .. ,366, j=l, .. ,NV), where NY is the number of years of record, 

NV(=5) is the number of variables considered (SRAD, TMX, TMN, DPT and WSPD). Further, 

define [Z]kj and [STD]kj as the corresponding mean and standard deviation vector for each calendar 

day k (k=1, .. ,366) of each variable j U=1, .. ,5). The historical time series of the precipitation is 

denoted as [P]mk' 

We now discuss key attributes of some strategies for resampling or synthesizing vectors of 

these variables. 
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1.1 Resampling Approaches 

Multivariate stochastic simulation of weather variables has not been studied as extensively as 

streamflow or precipitation. Two broad approaches that are possible are: 

1. Parametric 

2. Nonparametric - Bootstrap (Raw, Conditional and Smoothed) 

1.1.1 Parametric 

The parametric approach is the traditional method (see Jones et al., 1972, Bruhn et al. 1980, 

Nicks and Harp 1980, Lane and Nearing 1989 and Richardson 1980) for stochastic daily weather. 

simulations. Figure 1 summarizes the general structure of the parametric approaches. The general 

strategy is to generate precipitation independently and the other variables conditioned on the status of 

precipitation (i.e. rain or no rain on the day). The other variables are generated from either 

independently fitted statistical distributions to each of the variables and separately for each of the two 

precipitation states (i.e. rain, no rain), or independently or jointly fitted auto regressive models of 

order 1 CAR ... l) to the variables. 

Usually the year is divided into periods (seasons) and moments (mean standard deviation etc.) 

are calculated for each variable for each period for each precipitation state. The moments are used to fit 

statistical distributions or models. Dividing the year into various periods assumes homogeneity within 

each period and offers a treatment of seasonality. Jones et al. (1972), Bruhn et aL (1980), Nicks and 

Harp (1980) and CLIGEN (Lane and Nearing, 1989) divide the year into 14 day and one month 

periods respectively in their works. Richardson (1980) adopted a method, wherein the means and 

standard deviations of each periods and each precipitation state are smoothed using Fourier series. The 

smoothed daily values of the means and standard deviations are subsequently used for 

deseasonalization. 

Daily Precipitation is typically generated from a fitted first order Markov Chain for precipitation 

occurrence and by sampling from the distribution (such as Gamma, Exponential, Truncated Normal 

etc.) fitted for the daily amounts for each period. 

One approach to generate the other variables is to fit distributions independently for each 

variable for each period and for each precipitation state. Here, the simulations are made under the 

assumption that each variable is independent and identically distributed (i.i.d). This approach and its 

variants are used by Jones et al. (1972), Bruhn etal. (1980) and CLIGEN (Lane and Nearing, 1989). 

In CLIGEN each variable is assumed to be an independent Gaussian variable for each month, with 

parameters dependant on the precipitation state transition (e.g. wet to wet, dry to wet etc.). This 
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approach does not consider the dependance between the variables nor the serial dependence for each 

variable. Only the dependance on the precipitation state or the precipitation transition is considered. 

Serial dependance was incorporated by Nicks and Harp (1980) who fit Auto Regressive models 

of order one (AR-l) independently to each variable for each period. Consideration of dependance 

across variables is added by Richardson (1981) who used a Multivariate Auto Regressive model of 

order one (MAR-I). When the cross dependance terms are neglected in MAR-I, it reduces to an AR-l 

process. These AR models suffer from the drawback of assuming the data to be normally distributed. 

As a result only linear dependence can be reproduced. In practice data may not be normally distributed. 

Transformation of the data to be multivariate normal may be difficult and may lead to biased statistics 

upon back transforming to the original space. 

The parametric approaches discussed have four main drawbacks, which are (i) Choice of a 

model (a statistical distribution or the order of an AR or MAR model) is often subjective and rarely 

formally tested on a site by site basis (ii) Reliance on an implicit Gaussian framework (e.g. AR or 

MAR) which preserves only linear dependance and is not appropriate for bounded variables (iii) The 

fitted models have limited portability in the sense that procedures/distributions used at one site may not 

be best at other sites. The last point is important where an agency wishes to prescribe a uniform 

procedure over its domain. 

1.1.2 Nonparametric 

Nonparametric techniques do not require pre-selected distributions or models to be fit to data. 

The Bootstrap (or Raw Bootstrap) is a nonparametric technique introduced by Efron (1979). It is 

often used for constructing a confidence region, attaching a standard error to an estimate, carrying out 

a test of a hypothesis, or estimating the sampling distribution of some statistic. Historical data is 

resampled with replacement. Since it is the same data, the simulations by construction have the same 

distributional properties as that of the historical data. Since each resampled observation is drawn 

independently, serial dependence is not preserved. Serial dependence can be accommodated by using 

the 'block-resampling scheme' (a Conditional Bootstrap) developed by Kunsch (1989) and Liu and 

Singh (1992). Here a block of 'k' observations is resampled as opposed to a single observation in the 

Bootstrap. Serial dependance is preserved within, but not across a block. The block length 'k' 

determines the order of the serial dependence that can be preserved. 

A property of the Bootstrap technique is that the simulated samples will only have values that 

have occurred in the historical data and consequently the simulations are restricted to the historical set 

of values. Silverman (1986, p. 142) points out that this behaviour may reproduce spurious fine 

structure in the original data. This is not a desirable feature while applying the technique to simulation 

of daily weather variables, where we may wish to have simulated values that have not been observed 
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in the historical data and may be also beyond the maximum/minimum of the observed data. This 

problem can be alleviated by using 'Smoothed Bootstrap'. 

In the Smoothed Bootstrap (Silverman 1987, p 144), each observation Yi (i=l, .. ,n) is 

considered to be representative of a region (Yi-h , Yi+h) around it. The extent of this region h is called 

the bandwidth and is determined from the data. Intuitively, it is desirable to resample such that the 

maximum weightage is given to the observation Yi and weights decrease when moving towards Yi-h 

or Yi+h. This is accomplished by having a weight function centered at each observation. The weight 

function is usually chosen to be a valid probability density function, such as the Gaussian (N(O,l)). 

The simulation proceeds by picking an observation Yi with replacement from {Yi, .. ,yn} and then 

generating a value from N(Yi, h) with h specified. Formally, the Smoothed Bootstrap is equivalent to 

resampling from a kernel density estimate (k.d.e). Kernel density estimation is a nonparametric 

procedure described in section 2.3. 

In this paper, we develop a Smoothed Conditional Bootstrap that considers multivariate and 

serial dependence amongst the variables of interest. Hereafter, we refer to the scheme presented as 

the NP model. We first provide the motivation and main ideas of the model. The simulation 

algorithm is outlined next. The utility of the model is then illustrated through application to daily 

weather data at Salt Lake City, Utah, USA. 

2. MAIN IDEAS OF THE NP MODEL 

Our goal is to develop an approach that is driven directly by the observed data with reasonable 

assumptions, is easy to implement, is readily transferable from site to site and captures the relative 

frequencies of the data in a natural manner. We do this by defining the appropriate probability 

densities that we need to resample from and then discuss their estimation. 

2.1 Overview of the NP model 

A conceptual flow chart of the model is shown in Figure 2. The historical data of the other 

weather variables is standardized as [xhkj=([zlIkj - [Z]k)/[STD]kj where l,k and j are the same as 

defined in section 1. This removes the seasonality present in each variable. Precipitation for day 't' (Pt) 

is generated from the wet/dry spell model as described in Lall et al. (1995) briefly summarized in 

section 2.2. However, the user can generate the daily precipitation from his favourite model. 

In the NP model the year is divided into four periods or seasons (for the Salt Lake City example 

these are Season 1 (Jan-mar), Season 2 (Apr-Jun), Season 3 (Jul-Sep), Season 4 (Oct-Dec)). 

Simulations for days in any particular period are made using the historical data of that period. 

Subsequently, the comparison between the simulations and the historical data are also made the same 
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scale. One could choose different periods (e.g. monthly, weekly etc.). We chose the above four 

periods so as to be consistent with the wet/dry spell model (Lall et al., 1993) for daily precipitation. 

The aim of the model is to capture the day-to-day dependence present between the variables. The 

standardized vector of variables Xt for any day 't' is simulated from the multivariate conditional p.d.f 

f(Xt I Vt=V*). Where, Xt = standardized vector of [SRAD, TMX, TMN, WSPD, DPTJt that is to be 

generated for day t, Pt is the generated precipitation for day t from the wet/dry spell model; Xt-l = 

standardized vector of [SRAD, TMX, TMN, WSPD, DPTh-l already generated for day t-l, V* = 

[Xt-l, PrJ is the conditioning vector, 'd (=5), is the number of variables to be generated, d' (=6) is the 

number of conditioning variables and dg=d+d' . 

The conditional density f(Xt I Vt=V*) is defined as, 

(1) 

where fv(V=V*) is the marginal density of V, evaluated at a current vector V*. The standardized 

sequences Xt are transformed to Zt = Xt * [STD]k + [Z]k ' where k is the calendar day associated with 

day 't'. Thus, the key idea here is the estimation of this conditional probability density function from 

the historical data using nonparametric density estimators (kernel estimators) and subsequently 

simulating or bootstrapping from it. The mechanism of kernel density estimation is described in section 

2.3, and the algorithm for simulation from a conditional p.d.f (as in Equation 1) using kernel density 

estimators is developed and outlined in section 3. 

2.2 Precipitation Model 

The seasonal wet/dry spell model for daily precipitation described fully in Lall et al (1995) has 

three random variables - wet spell length, Lw days, dry spell length, Ld days, and wet day 

precipitation amount, P inches. The periods(seasons) are as defined in the previous section. Variables 

wsp and dsp are defined through the set of integers between 1 and the season length, and P is defined 

as a continuous, positive random variable. A mixed set of discrete and continuous random variables is 

thus considered. Successive wet day's precipitation amount is taken to be independent and the 

precipitation is independent of the wet spell length (Lw). Correlation statistics computed for the data 

sets analyzed supported these assumptions. 

The p.d.f.'s of wet day precipitation amount f(P) and the probability mass functions (p.m.f.'s) 

of wet spell length f(Lw) and dry spell length f(Ld) are estimated for each season using kernel density 

estimators. 
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A dry spell is first generated using f(Ld)' Then a wet spell is generated using f(Lw). 

Precipitation for each of the 'Lw' wet days is then generated from f(P). The process is repeated with 

the generation of another dry spell. If a season boundary is crossed, the p.d.f.'s used for generation 

are switched to those for the new season. This procedure continues until a synthetic sequence of the 

desired length has been generated. The p.d.fs f(Lw), f(Ld) and f(P) are estimated using kernel density 

estimators as described in Lall et al. (1993) and Rajagopalan et al. (1995). At this point the kernel 

density estimation is generically described and the estimators used in this work are outlined below. 

2.3 Kernel Density Estimation 

The kernel density estimator generalizes the frequency histogram as an estimator of the p.d.f. 

While the histogram is capable of showing some features of the data, it has several drawbacks. It is 

difficult to manipulate analytically, it is not easy to visualize for multivariate situations, and it allows 

for no extrapolation beyond the data. The indicated frequency distribution is sensitive to the class 

width, as well as the origin of each class. Silverman (1986, p.9-11) illustrates these problems 

graphically. One can improve the histogram by centering rectangular boxes at each observation (to 

gain independence from choice of origin). A kernel density estimator, introduced by Rosenblatt 

(1956), is formed by centering a smooth kernel function at each observation. Kernel density 

estimators for univariate continuous variables, univariate discrete variables and multivariate continuous 

variables are now defmed. 

2.3.1 Univariate Continuous Variables 

We stated earlier that the Smoothed Bootstrap is equivalent to sampling from a kernel density 

estimate. The kernel density estimator for a continuous variable (such as the wet day precipitation P) is 

defined as 

n 
f(P) = L _1 K(P-Pi) 

i=l nh h 
(2) 

where K(.) is a kernel function centered on the observation Pi' and can be any valid probability density 

l . function and h is a bandwidth. The bandwidth h controls the amount of smoothing of the data in the 

density estimate. An estimator with constant bandwidth h (like in Equation 2) is called a fixed kernel 

estimator. Commonly used kernels are: 

Gaussian Kernel K(t) = (21tt 1/2 e-t2/2 (3a) 
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Epanechnikov Kernel 

Bisquare Kernel 

K(t) = 0.75 (1 - t2) 

K(t) = (15116) (1 - t2)2 

I t I ~ 1 

I t I ~ 1 

(3b) 

(3c) 

An evaluation of K(.) represents the weight given to the observation Pi that is based on distance 

between P, and Pi' One can see from Equation 2, that the kernel estimator is a convolution estimator 

that forms a local weighted average of the relative frequency of observations in the neighborhood of 

the point of estimate. The kernel function, K(.) prescribes the relative weights, h prescribes the range 

of data values over which the average is computed. This is illustrated in Figure 3. 

The p.d.f of wet day precipitation f(P) is obtained by applying, a kernel density estimator to log 

transformed data. Note that most of the data of wet day precipitation is concentrated near the lower 

boundary (Le. 0.),. as a result the p.d.f estimates using the kernel estimators are highly biased due to 

the boundary problem. The log transformation on such heavily skewed data alleviates the boundary 

problem. The resulting estimator is given as: 

f(P) = .If(log(P)) = t _l_K(ln(P)-ln(Pi» 
P i=l nhP h 

(4) 

The Epanechnikov kernel is used and the bandwidth h is chosen for the log transformed data using the 

recursive approach of Sheather and Jones (1991) to minimize the Mean Integrated Square Error 

(MISE) of estimate of f(log(P». 

Note that no assumptions regarding the parent density of P have been made thus far. We need to 

specify only the bandwidth h and the kernel function. Silverman (1986) points out that the kernel 

density estimator is more sensitive to the choice of the bandwidth than to that of the kernel. 

2.3.2 Univariate Discrete Variables 

In this section, we present procedures for the estimation of the univariate probability mass 

functions for discrete variables (such as wet spell lengths w, dry spell lengths d). We recommend 

the Discrete Kernel (DK) estimator developed in Rajagopalan and Lall (1995). The DK estimator 

for the p.m.f. f(L), where L is either w or d, and n is the corresponding sample size is given as: 

L rn"" L . 
" " -J-f(L) = £...J Kd(-) 0;. 

j=l h J 
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where Uj is the sample relative frequency (n/n) of spell length j, nj is the number of spells of 

length j, Lmax is the maximum observed spell length (note that1.
1tX a. = 1), Kd(.) is a discrete 

j=l J 
kernel function, and L,j and h are positive integers. The kernel function Kct(.) is given as: 

Kct(t) = atl + b for It I ~1 

The expressions for a and b for the interior of the domain, L > h+ 1 and the boundary region L < h 

are developed in Rajagopalan and Lall (1995). 

The bandwidth h is estimated by minimizing a Least Squares Cross Validation (LSCV) 

function given as, 

Lm"" Lm .. 
LSCV(h) = L (fO)2 - 2 L f_j(j) U. 

j=l j=l J 

(6) 

(7) 

where, f_jO) is the estimate of the p.m.f of spell length j, fOl1lled by dropping all the spells of 

length j from the data. This method has been shown by Hall and Titterington (1987) to 

automatically adapt the estimator to an extreme range of sparseness types. Monte Carlo results 

showing the effectiveness of the DK estimator with bandwidth selected by LSCV are presented in . 

Rajagopalan and Lall (1995). 

2.3.3 Multivariate Continuous Variables 

Extending the idea of the kernel density estimator for univariate continuous variables, a kernel 

density estimate of the multivariate p.d.f of a vector Y is defined as (Silverman, 1986, p. 76-78): 

n 

fey) = kL K(u) (8) 
i=l 

where u = (y- Yi)T h~-l(y- Yi), and K(u) is a multivariate kernel function. Y = [YbY2, .. ,Yd]T 

denotes the d dimensional random vector whose density is being estimated with, Yi = 

[Y li,Y2i,··,Y di]T i = 1 to n the sample values of Y; n is the number of sample vectors; h the kernel 

bandwidth and S the covariance matrix. Here we use a Gaussian kernel function given as, 
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K(u) = exp( -U/2) 
(2n:)dl2det(S)1I2 hd 

(9) 

Just as in the univariate case described in section 2.3.1, K(u) represents the weight given to an 

observation Yi that is based on distance between y, and Yi' The distance used here is the Euclidean 

distance modified to recognize the covariance of the y. It can be seen that the estimator in Equation 8, 

is similar to the univariate estimator in Equation 2 since it is a local weighted average of the relative 

frequency of observations in the neighborhood of the point of estimate. Here too the kernel function. 

K(.) prescribes the relative weights, h prescribes the range of data values over which the average is 

computed and the covariance S provides the orientation. 

Here we choose the bandwidth as the one that minimizes mean integrated square error in fey) if 

the underlying distribution is assumed to be multivariate Gaussian. Silverman (1986, p 86-87) gives 

an appropriate h to use for a multivariate Gaussian p.d.f. using the Gaussian kernel as, 

h ={(4/(2d+l»1I(d+4)}n-1I(d+4) (10) 

Here n is the number of observations and d is the dimension. Note that h -7 0 as n -7 00 so that the 

kernel density estimate is consistent. However. as the dimension d increases h also increases. This is 

because in higher dimensions large regions of high density may be completely devoid of observations 

in a sample of moderate size. The bandwidth in such a situation has to be bigger to cover large regions. 

The above choice of bandwidth, is optimal for p.d.fs that are near Gaussian and is an adequate choice 

for many cases (Silverman, 1986, p 45-48). Cross Validation or Plug in methods could be used here 

to choose h as in the wet/dry spell model. However, this increases the computational burden 

substantially. Recall that the parametric approaches often assume a Gaussian distribution. In a 

Bayesian context using this bandwidth can be thought of as developing a posterior kernel density 

estimate with a Gaussian prior. The resulting tail behaviour and degree of smoothing supplied will be 

consistent with an underlying Gaussian p.d.f, with some adaption to local features. 

An attractive feature of kernel estimators of the p.d.f is that they are local (use only a 

neighborhood around the point of estimate) and hence are not overly effected by outliers. Since they 

make no prior assumptions of the underlying probability density function, they are data driven and 

robust and are portable across sites/data sets. 

In the bootstrap context we have a region that each observation Yi represents. The orientation 

and shape of the region is given by the scaling factor hS and the kernel function K(u). Resampling 

from the kernel density estimate entails picking a point Yi uniformly in [Yl , .. ,yn] and then simulating 

from the kernel K(u), I.e. N(Yi,h2S). We extend this approach formally for simulation from a 
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multivariate conditional p.d.f in the following section. For details on kernel density estimation refer to 

Silverman (1986) and Scott (1992). 

3. Kernel Density Estimation of Multivariate Conditional p.d.f 

For the simulation of interest here an estimate of the conditional p.d.f f(xt I V t = V*) is needed. 

The strategy used here is similar to the one used by Tarboton et al (1993) for streamflow simulation. 

Applying the estimator in Equation 8 to the conditional p.d.f in Equation 1 with sample vectors xr==[Xt, 

Xt-l,Pth denoted as [xi,Vi] we get: 

[XCXj; (V* -Vi?]S-I[ Xt-Xi 1 
f(xt I Vt =V*) = _1_ 1 ± 1 K( V* -Vi) (11) 

nhd fv(V"')i=1 det(S)ll2 h2 

where S is the dg by dg covariance matrix of the vector (xi,Vi) estimated from historical data. Let the 

matrix S be partitioned as, 

(12) 

where Sx is the d by d covariance matrix of x , Sv is the d' by d' covariance matrix of V and Sxv the d 

by d' cross covariance between x and V. Using the Gaussian kernel function (i.e. Equation 9) 

Equation (11) can be reduced to a weighted sum of Gaussian functions, 

where, 

n 

f(xt I Vt =V*) = L wjN(bhCj) 
j=l 

n ([V"' V]T[S ]-1 [V* V] ) 
Wi = W'j I L W'j ,W'j = exp(-ai/2); ai = - i v

2 
- i ; 

~l h 

n 

Note that L Wi = 1 
i=1 

1 1 

(13) 

(14) 

(15) 
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From Equation (13) we see that the conditional p.d.f reduces to a weighted sum of Gaussian 

functions. It can be thought of as a slice through a multivariate density function, estimated as a 

weighted sum of slices with the same orientation through the kernels placed on each observation. 

Simulation from the conditional p.d.f can be achieved by picking a point Xi with probability Wi, 

then sampling from N(bi,c). 

3.1 NP Simulation algorithm 

The simulation proceeds as: 

I. Simulate Precipitation for all the days of the year from the wet/dry spell model. 

II. Estimate the model parameters (bandwidth h and the covariance matrix S) from the data 

for each season. 

m. At the start of each period of interest initialize t=O, Xt = [0] 

IV. Generate Xt sequentially (day by day) from f(xt I Vt), where the conditioning vector Vt consists 

of the previous day's vector Xt-l and the current day's generated precipitation Pt 

(i.e. Vt = [Xt-l,PtD as: 

1. Estimate weights (Wi) associated with each data point (Xi) (Equation 14) 

2. Resample an index i using Wi (i = 1, .. ,n) as probabilities. 

3. Estimate the conditional mean (bi) and conditional variance (ci) using the picked point Xi and 

Vt (Equation 15) 

4. Generate vector Xt = bi + E where E is from a multivariate normal distribution with mean 0 

and variance c (following Devroye, 1986, p. 565) 

5. Recover Zt as Zt = Xt*[STD]k + [X]k where k is the calender day corresponding to day t. 

V. At the start of a new simulation go to m. 
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4. MODEL APPLICATION AND PERFORMANCE MEASURES 

To demonstrate the utility of the resampling model for generation of daily weather variables, the 

model was applied to daily weather data from the station Salt Lake City in Utah. Thirty years of daily 

weather data was available from the period 1961-1991. Salt Lake City is at 400 46' N latitude, 1110 

58' W longitude and at an elevation of 1288 m. Most of the precipitation comes in the form of winter 

snow. Rainfall occurs mainly in Spring, with some in Fall. 

We shall first outline the experimental design and then some measures of performance used to 

judge the utility of the model. 

4.1 Experiment design 

Our purpose here is to test the utility of the NP generation scheme. The main steps involved in 

accomplishing this are: 

1. Daily precipitation is generated from the wet/dry spell model. 

2. The other variables are generated following the simulation algorithm described in section 3.1 

3. Twenty five synthetic records of thirty years each (i.e. the historical record length) are simulated 

using the NP model. 

4. The statistics of interest, described below are computed for each simulated record, by each period 

and compared to statistics of the historical record using boxplots. 

4.2 Performance measures 

The following statistics were considered to be of interest in comparing the historical record and 

the NP simulated record of other weather variables. 

Moments: 

1. Mean of each variable for each season. 

2. Standard deviation of each variable for each season. 

3. Skew of each variable for each season. 

4. Co-efficient of variation of each variable for each season. 

Relative Frequencies: 

5. 25% quantile of each variable for each season. 

6.75% quantile of each variable for each season. 

Dependence: 

7. Cross correlation on any given day between the variables for each season. 

8. Lag-1 daily Cross correlation between the variables for each season. 
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9. Lag -1 daily correlation of each variable for each season. 

5. RESULTS 

The statistics of interest calculated from the simulations are compared with those for the 

historical record using boxplots. A box in the boxplots (e.g. Figure 4) indicates the interquartile range 

of the statistic computed from twenty five simulations, the line in the middle of the box indicates the 

median simulated value. The solid lines correspond to the statistic of the historical record. The 

boxplots show the range of variation in the statistics from the simulations and also show the capability 

of the simulations to reproduce historical statistics. 

Figures 4 through 8 show the boxplots of moments and relative frequency measures of Solar 

Radiation, Maximum Temperature, Minimum Temperature, Average Wind Speed and Average Dew 

Point Temperature respectively. It can be seen that the historical values of mean, and the quantiles are 

well reproduced, while standard deviation, coefficient of skew and coefficient of variation are not quite 

well reproduced. This is to be expected as the kernel methods inflate the variance by a factor equal to 

(1+h2) (see Silverman 1986, p. 143) which in turn effects the skew and the coefficient of variation. It 

may be desirable to have to have a slight increase in the variance of the simulations as compared to that 

of the historical. 

lllustrative statistics of wet spell lengths, dry spell lengths and wet day precipitation for the 

simulations from the wet/dry spell model are also estimated and are shown in Figures 9,10 and 11 

respectively. Figure 9 shows the boxplotsofaverage wet spell length, standard deviation of wet spell 

length, fraction of wet days and length of longest wet spell length for each season. Figure 10 shows 

the box plots of these statistics of the dry spell length. Figure 11 shows the boxplots of average wet 

day precipitation, standard deviation of wet day precipitation, percentage of yearly precipitation in 

each season. The boxplots in Figures 9, 10 and 11 show that the historical statistics are reproduced t .. 

well by the simulations. 

Figures 12 and 13 show the boxplots of the lag-O cross correlation and lag-l cross correlation 

between the variables. Figure 14 shows the lag-l auto correlation of each variable for each of the four 

seasons. The correlations from the simulations and the historical correlations seem to be different in a 

number of cases. 

One reason for this mismatch of the correlations is that the precipitation is supplied externally 

from the wet/dry spell model. As a result the covariance between Xt-l and Pt need not correspond to 
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that of the historical covariance between between them. This introduces a bias in the conditioning plane 

from which Xt is generated and results in a mismatch of the correlations. One way to get around this 

problem is to generate the precipitation also in the multivariate model, i.e. simulate Xt from f(xt I Xt-l) 

where both Xt and Xt-l are of dimension 6. This should reproduce the correlations statistics. However, 

negative values for precipitation may then be simulated. Since most of the precipitation is concentrated 

near 0., simulating precipitation also along with the other variables may lead to oversmoothing of the 

mode of the precipitation density. 

Another reason, could be that there are two different process which are the one with zero 

precipitation and one without. Since there are two different processes with different correlation 

structure, the combined correlations need not match. A multivariate autoregressive model of lag 1 with 

precipitation supplied exogenously (like in the NP model described here), that can be thought of as a 

counterpart in the parametric frame work, will also suffer from the correlation mismatch. 

6. SUMMARY AND CONCLUSIONS 

A multivariate nonparametric model NP that aims at capturing dependence upto lag-1 was 

presented and illustrated. The simulations are made from the conditional p.d.f estimated from the data 

using kernel density estimators. The kernel estimators being local average estimators of the target 

function, have the advantage of readily admitting arbitrary probability densities without requiring that 

they be hypothesized or formally identified. Broader dependence structures can be consequently 

considered. The need to choose/justify and fit the best p.d.f is side stepped. 

The bandwidth is the key parameter in the NP model, as it determines the degree of smoothness 

that will be imparted to the p.d.f. The larger the bandwidth the smoother the p.d.f and vice-versa. 

Choosing h automatically (using cross-validation or other approaches Scott 1992) from the data would 

be more appropriate than the choice used here. However, the additional variance in the choice of h 

induced by such an estimation process may detract from its use where the primary purpose is to 

resample the data. Bandwidth selection methods are undergoing continuous improvement. We expect 

to implement more formal selection procedures in due course. One could also use a local covariance 

matrix estimated at each data point using a few neighbors of that point (i.e. Si instead of S in Equation 

8). Tarboton et al (1993) use this method for streamflow simulation. 

Another problem with simulations is the boundary effect. For the variables that are bounded 

(e.g. Solar Radiation and Precipitation), values that violate the bounds could be generated. Typically 

these are censored to the bound. This may introduce a bias in the simulations. Procedures to better 

address this problem in the kernel framework are described in Muller (1989) and Lall et al (1993). 
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We chose to apply the NP model on a seasonal time scale, because the precipitation model that 

was used to drive the NP model is a seasonal model. However, we checked the results of the seasonal 

NP model at monthly time scale, and found the performance to be similar (results are not presented 

here). 

The NP model developed here underscores our growing conviction that non parametric 

techniques have an important role to play in improving the synthesis of hydrologic time series. They 

can capture dependence structure present in the data, without imposing arbitrary distributional 

assumptions, and produce synthetic sequences that are statistically similar to the historic sequence. 

The idea of resampling the data with appropriate perturbation of each value while maintaining selected 

dependance characteristics (or data sequencing) is easy to accept as a practical matter. A Markovian 

interpretation of the NP model described here is apparent upon thinking about the manner in which the 

I-step transition process works. The value to be simulated at the next time step can be thought of as a 

transition to any of the states within a bandwidth from the state of the current time. The conditional 

p.d.f can be viewed as approximation to the transition probabilities. Thus. the NP model can be seen 

as a I-step Markov model with the transitions estimated nonparametricaUy. 

We are working on improving the multivariate, nonparametric resampling scheme using nearest 

neighbor and similar methods. 
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I. Data 
Given the historical time series of precipitation Pmk 

and other weather variables [z ] mkj 
where, m = 1, .. .NY. k = 1, .. ,366, j = I, .. ,NV 

II Deseasonalization 
Treatment for Seasons (e.g. separate analysis 
by season. removal of seasonal means etc.) 

Deseasonalization 

ill Generation 
Precipitation is generated independently day by day. 

Occurrence: Markov Chain or Point Process 
Amount: Exponential. Gamma, Truncated normal etc. 

fitted to data. 

No 

IV Generate Zt 

Consider serial 
dep.? 

Yes 

- Fit distribution for each variable for ..... / - Fit Auto Regressive model of 
order 1 (AR-I) for each variable 
for each period. And generate from 
them. 

each period (season) and for each 
precipitation state. Generate random 
vectors from appropriate fitted distribution 
(depending on the precipitation status) (This preserves lag dependance and 

no cross dependance) 
or 

- Fit Multivariate AR-l to the data 
and simulate from it. 
(This preserves lag and cross 
dependance up to lag-I) 

Figure 1: General Structure of Parametric Approaches. 
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Section 2.1 

Section 2.2 

Section 3 and 
3.1 

Figure 2: 

.' 

r Given the the series [z]rnkj and Plk 

) where, m = 1, •. ,NY. k = 1 •.. ,366.j = 1 •..• NY 
\.. 

I 
/' Deseasonalize [z]mkj as, 

[xJrnkj = ([zJrnkj -(Z]kj)l[STD]kj 
where [Z]kj and [STD]kj are vectors of means 

and the standard devIations of variable j 
for calendar day k ~ 

I ,. 
Generate a precipitation sequence P t 

\.. 

. from Nonparametric Renewal Model 
(NPR) 

.... 
.... 1 

Given Xt-1 and Pt. 
Simulate Xt from a kernel <;tensity 

\.. 
estimate of the p.d.ff(xt I Xt-1.Pt> 

~ 

I 
r Recover Zt as 

"\ 

zt= Xt*[S'ID]kj + [Z]kj where k is 

"-
the calendar day corresponding to day t ) 

I c ) t= t+1 

Overview of Development of the NP Model. 
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Figure 3: 

L _ 

Example of kernel density estimation using 5 data points with 
Gaussian Kernel, h = 0.5. 
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APPENDIX 48 

A Kernel Estimator for Discrete Distributions 

Balaji Rajagopalan and Upmanu Lall 
Utah Water Research Laboratory 

Utah State University, Logan, UT - 84322-8200 

Abstract 

We present a discrete kernel estimator appropriate for estimating probability mass functions 

(p.m.fo's) for integer data. Discrete kernel functions analogous to the Beta functions used as 

kernels in the continuous case are derived for the interior and for the boundary of the domain. An 

integer bandwidth is considered. Cross validation is used for bandwidth selection. The estimator 

was motivated by the need to characterize processes (e.g., mixtures of geometric distributions) 

with long tailed distributions with high mass near the origin, and integer arguments of the random 

variable. Monte Carlo comparisons with the Hall and Titterington [8] (HT) estimator are offered. 

An application for estimating the p.m.f.' s of wet and dry spell lengths for a nonparametric renewal 

model of daily rainfall is also presented. Other possible methods for obtaining discrete weight 

sequences are also presented. 



1. BACKGROUND 

The problem of nonparametric smoothing of the empirical discrete p.m.f (or multinomial 

cell proportions) has been of interest in recent years. However. it has not been studied as 

intensively as nonparametric density estimation. its counterpart in the continuous case. Hall and 

Titterington [8] mention that smoothing can be beneficial when there are many cells with small or 

zero frequencies, i.e the data are sparse. Here we consider that we have a sample x 1 •... ,xn for n 

multinomial trials with possible outcomes 1,2, .. ,kmax E V with probabilities of Occurrence 

Pl, .. ,Pkmax that are unknown. Estimates Pi of the probabilities Pi may be obtained as sample 

relative frequencies G>'i = ni/n) or cell proportions, or by smoothing the Pi. In the latter case we 

presume that V is an ordered set and that "distance" between its members is definable through a 

standard Lebesgue measure. We consider cases where the set V may be bounded or unbounded, 

and focus on developing an appropriate smoother for the sample relative frequencies that properly 

deals with the discrete nature of the process. 

Our practical interest lay in developing a discrete, non parametric p.m.f for data on the 

length (in days) of dry or wet spells of rainfall. The shortest spell considered is 1 day. In general, 

the longest possible spell is not known a priori. Data s~ggests long right tailed distributions for dry 

spell length that may correspond to a mixture of geometric p.m.f.'s (see Rajagopalan et. al. [10]), 

The concept of smoothing in the context of multinomial cell probability estimation was 

introduced by Good [6 and 7]. This was later studied and improved by Fienberg and Holland [5]. 

Stone [13], Titterington [14], Titterington [15], Aitchison and Aitken [1], Titterington and 

Bowman [16] among others. Bishop et al [2] show that these estimators are often better than the 

cell proportion estimate under squared error loss. Hall and Titterington [8] argue that Pi may not 

be consistent in data sparse situations. The smoothing estimators developed by Wang and Van 

Ryzin [17], Simonoff [12] and Hall and Titterington [8] formed a starting point for our work. 
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The general form of smoothing estimators in this context is given by 

j="" 

Pi = I. K(i,j,h) Pj i,j E I, the set of integers (1) 
j =-00 

K(i,j,h) is a weight function or kernel, Pj is the relative frequency of cell j and h is called the 

bandwidth or window width. 

Wang and Van Ryzin [17] developed a class .of estimators of the form (1), using a 

Geometric kernel (WV) (K(ij,h) = 0.5h(1-h)li-jl if li-jl;:::1; K(iJ,h) = (1-h) if i=j and h E [0,1]). 

The "drop off' of weights associated with the Geometric kernel is rapid. Wang and Van Ryzin 

, . [17] estimate h under an approximate (MSE) criterion formed by truncating the Geometric kernel 

beyond two cells. As a result, very little smoothing is obtained in most cases and not much may be 

gained for sparse data. 

r' 

By imposing a smoothness constraint on the cell probabilities, Simonoff [12] obtained 

relative consistency results for an estimator based on a maximum penalised likelihood criterion 

(MPLE). In this approach, the estimates Pi are solved by minimizing a penalized likelihood 

function dermed as, 

ku ku 

L = I. ni log@i) - ~I. {log@Wi+1)}2 
i=1 i=1 

L. such that 

r -

r . 

L • 

k. 

I. Pi =1 (2) 
i=1 

P ;::: 0, is a smoothing parameter, and V: [l,ku] 

The estimates from MPLE depend significantly on the extent of estimation required (Le., 

ku) beyond the maximum observed cell (i.e., kmax). This is of concern, because we would prefer 
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a natural extension of the tail of the p.m.f by the method used, rather than a prior specification of 

its extent. 

The estimator developed by Hall and Titterington [8] (here after referred to as HT) is given 

as, 

j=-

ih = L W(i,j,h) Pj (3) 
j :::-00 

j:::oo 

where W(i,j,h) = K(~(~:), h > 1 and s(h) = L J<(j/h); K(.) is any suitable continuous 
j = ..... ; . 

univariate kernel function, with compact support satisfying the conditions of positivity, integration 

to unity, symmetry, and finite variance which are, 

(a) K(u) > 0; (b) JK(u)du = 1; (c) JuK(u)du = 0; (d) Ju2K(u)du= k2;c 0 (4) 

where (u = (i-j)/h), and s(h) is a multiplicative factor required to nonnalize the continuous variable 

kernel function for use with discrete data, such that the desired conditions on W(.) viz. 

j=~ j=~ 

L W(i,j,h) = 1 and L j W(i,j,h) = 0 are satisfied. Hall and Titterington [8] proposed a 
j::: .. 00 j = .. 00 

cross-validatory procedure for selecting h. This was later studied by Dong and Simonoff [3] who 

extended this estimator to boundary kernels . 

It is well known that kernel estimators suffer from increased bias in the boundary region 

(Le. 1 :s; i :s; h+ 1 in our situation of interest). For the estimates of cells in the boundary there is a 

lack of full complement of observations on either side of the cell of estimate. As a result, the 

desired conditions on W(i,j,h) mentioned above will not be preserved. To correct this, special 

boundary kernels that satisfy the required conditions are used (Miiller [9]). Miiller [9] formally 

developed special boundary kernels in the continuous case. Dong and Simonoff [3] developed 
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boundary kernels (condition 4(a) is relaxed) that could be used in the HT estimator for the discrete 

case. We refer to the HT estimator with the boundary modification of Dong and Simonoff [3] as 

HTIDS. 

We performed comparisons of these three estimators (viz. WV, MPLE and HTIDS) on data 

generated from long tailed distributions (see Rajagopalan et. al. [10]) and found HTIDS to be the 

best. Hence, we compare the relative performance of the estimator we develop later in this paper 

with HTIDS. 

For finite samples, some disquieting aspects of the HT estimator become apparent. The 

non-integer bandwidth leads to an effective kernel that also varies with h in a manner quite different 

from that prescribed by (4). The effective integer support ofW(ij,h) is [(i-h*),(i+h*)], wher~ h* 

is the closest integer greater than or equal to h. HTIDS kernels are defined as quadratics or other 

polynomials over [i-h,i+h]. Since this is not the effective integer support of the kernel the effective 

kernel over the space of integers is not the quadratic defmed. 

Alternatively, it is possible to develop a kernel that recognizes the data to be in integer 

space, has an integer bandwidth and satisfies all the required conditions in the integer space. This 

also obviates the need for normalization of the kernel weights as done in HT IDS . We explored this 

line of thought and, sought a direct, discrete analog of the continuous kernel density estimator. 

The estimator is first presented. Bandwidth estimation is described next. Monte Carlo 

comparisons with HTIDS are then present. Comparisons with real data sets follow. Discussion of 

, - the new estimator and other possible discrete estimators conclude the paper. 

L _ 

r -

2. THE DISCRETE KERNEL ESTIMATOR (DKE) 

We define our estimator Pi for cell i through a weighted linear combination of the sample relative 

frequencies, Pi as, 
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kmax 

ih = L K(tj) Pj (5) 
j=l 

where i,j and h are positive integers, tj = (i-j)Ih, K(t) is a kernel function, and V : [1,00]' In the 

continuous case, Epanechnikov [4] showed that the MSE optimal kernel of second order, is the 

quadratic kernel (QK), also known as the Epanechnikov kernel. The general form of the QK is, 

K(u) = au2 + b for lui SI (6) 

In the continuous case, a=-0.75, b = 0.75. Scott [11], p. 140, Equation 6.25 points out that this 

corresponds to a Beta density function, defined for t E [-1,1]. Other members of this class can be· 

used if additional smoothness is desired. 

Here, we chose a discrete quadratic (DQ) kernel of the form K(tj) = atp + b, where tj = (i­

j)lh. The main focus then is to specify the constants a and b for the interior (i > h+l) and the 

boundary region (l SiS h+l). The constants a and b are solved to satisfy: (A) the kernel function 

j=i+h •• 

goes to zero for li-jl2:h, i.e KCtj) = 0 for Itj 12: 1 , (B) sum of the weights is unity, i.e L KCl~) = 1 
j=i-h 

j=i+h •• 

and CC) the first moment of the kernel function is zero, i.e L K(l~ )tj = O. Note that the above 
j=i-h 

conditions are the discrete versions of the conditions given in Equation (3) for continuous variable 

kernels. One could choose higher order Beta kernels and derive results similar to these that follow 

for DQ. 

For the interior region (i > h+l) using conditions (A) and (B) gives Equations (7) and (8), 

(7) 
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L ~ 

j=i+h 

L (atp+b) 
j=i-h 

= 1. where tj = (i-j)/h (8) 

Condition (C) is satisfied if a=-b. The coefficients a and b can now be expressed in terms of the 

bandwidth h as, 

For the boundary region (1 <iSh+ 1) condition A is modified as, 

K(t) = 0 for t S -1 and t;;::q where q = (i-l)/h. 

Applying conditions (B) and (C) we get Equations (11) and (12). 

j=i+h 

L (atp+b) 
j=l 

j=i+h 

L tj(atp+ b) 
j=l 

= 

= 

Solving for a and b we get, 

where, 
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- -D x 1 
a - 2h(h+i) (l_ CD ) 

4h3 12h3(h+i) 

C = h(h-l)(2h-l) + (i-2)(i-l)(2i-3) 

D = -h(h-l) + (i-2)(i-l) 

E = -(h(h-l))2 + «i-2)(i-l))2 

1 

o 

b = [1 aC]_l_ 
6h2 (h+i) 

(9) 

(10) 

(11) 

(12) 

(13) 
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From Equation (10) it can be seen that at the boundary (Le., i = 1) the weight associated with the 

kernel is zero. This is not desirable because, for long tailed distributions defined on the interval 

[1,(0) most of the mass is concentrated right at i= 1. Clearly, using the boundary modification in 

Equation (13) for estimation of p.m.f at the boundary (i.e., i=I) will introduce a large bias in the 

estimate. Therefore, we need a further modification for estimation at i=1. By not enforcing the 

K(t) = 0 at i = 1, we modify (A) to be 

K(t)=Ofor~-1 (14) 

while Equation (11) and (12) remain the same. Solving Equations 14, 11 and 12 for a and b we 

get, 

where, 

C = h(h-l)(2h-I) 

D = -h(h-l) 

E = -(h(h-l))2 

(15) 

From Equations (9), (13) and (15) note that the kernel and hence, the estimator Pi is ex.pressed 

strictly in terms of the bandwidth h. An optimal choice of h then completes the definition of the 

estimator. 

Three criterion often used for bandwidth estimation are (1) direct minimization of average 

mean square error (MSE) (2) Maximum likelihood cross validation (MLCV) and (3) Least squares 
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cross validation (LSCY). These could be optimized over a discrete set of h values. 

We tested all the three methods and found LSCV to be the best. Hall and Titterington [8] 

and Dong and Simonoff [3] also argue in favour of LSCV. The bandwidth is selected by 

minimizing the LSCV function given as, 

kmax 

LSCV(h) = L Wi)2 
i=l 

kmu 

2" ..... p. n' 
~ n.LJ ~l 1 

i=l 

(16) 

where, P-i is the estimate of the ith cell, by dropping th~ ith cell and n. In a related context, Hall 

and Titterington [8] also show that cross-validation automatically adapts the estimator to an extreme 

range of sparseness types. If the multinomial is only slightly sparse, cross-validation will produce 

an estimator which is virtually the same as the cell-proportion estimator. As sparseness increases, 

cross-validation will automatically supply more and more smoothing, to a degree which is 

asymptotically optimal. 

An example application comparing DKE (with DQ kernel) to HTfDS with QK based 

kernels for four data sets is shown in Figures 1, 2, 3 and 4. The data in Figure 1 was sampled 

from a Oeometric distribution (01) defined as 0(1t=0.2). The data in Figure 2 was sampled from a 

mixture of two Oeometric distributions (02) defined as (0.30(1t=0.9) + 0.70(1t=0.2)). The 

sample sizes for 0 1 and 02 are 250. Figure 3 shows the p.m.f estimates estimated for the mines 

data, analysed by Dong and Simonoff [3]. Figure 4 shows the estimated p.m.f from both 

estimators of dry spell length data, for season 3 (i.e. luI - Sep) for the station Woodruff, in Utah. 

The sample size in this case was 539. All four figures indicate that both DKE and HTfDS perform 

comparably. As both the estimators are similar this is expected. We investigate through Monte 

Carlo simulations, the behaviour of these estimates for selected situations. The behaviour of the 

weight sequence from both the estimators are also probed. The results are discussed in the 

following section. 
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3. MONTE CARLO COMPARISONS 

We present results from Monte Carlo simulations, comparing our estimator with the HT IDS 

estimator using QK. Data sets were generated from situations that may be of interest in our 

particular context (e.g., geometric distribution, with a considerable boundary region). We 

generated 500 realizations from the two populations Gland G2. Sample sizes chosen were n = 

50,100,200,300,500. 

The statistical measures computed to assess the relative performance of DKE and HTIDS 

estimators are: 

j = nsim i = ku 
1. Average Sum of Squared Errors (ASSE) ( L (L cPij - Pi)2 ) / nsim) across all 

j=l i=l 

realizations for each sample size. 

i =k. 

2. Sum of Squared Error (SSEj} ( L cPij - Pi)2) for each realization j = 1, .. ,nsim 
i = 1 

j = nsim i =ku 
3. Average Sum of Absolute Error (ASAE) ( L (L abs(Pij - pO ) / nsim) across all 

j=l i=l 

realizations for each sample size. 

j = nsim 

4. Cell Root Mean Square Error (CRMSE) { L (cPij - p02) / nsim }0.5 across all 
j = 1 

realizations for each sample size and for each cell i = 1, .. ,ku 

5. Fractional Cell Root Mean Square Error: FCRMSEi = CRMSEi/Pi 

j = nsim 

6. Average Cell Bias (CBIASi) L (cPij - Pi) / nsim) across all realizations for each sample 
j = 1 

size and for each each cell i = l, .. ,ku 

7. Fractional Cell Bias: FCBIASi = CBIASlpi 
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8. Coefficient of variation of bandwidth Cv = slh for each sample size. Where s and Ii are the 

standard deviation and mean of the bandwidths obtained for all the nsim realizations. 

Note that we chose ku to be 30 in this case, and Pi'S are the true p.m.f 's obtained from the known 

underlying distributions from the samples were generated, nsim is the number of simulations, in 

our case it is 500. 

Table 1 shows the ASSE and ASAE for the two estimators for the two populations G1 and 

G2 considered. It can be observed from Table 1 and Figures 5 and 6 that the performance of the 

two estimators over these two measures is quite close. Figures 5 and 6 indicate that the ASSE 

appears to decrease with n at rates :.1.03 and -0.86 for HTIDS and -0.85 and -0.9 for DKE, for G 1 

and G2 respectively. These rates are very similar, and are close to the rate n-1 as anticipated in Hall 

and Titterington's [8] Theorem 2.1. However, the SSE for HTIDS has a larger spread that DKE as 

can be seen from Figures 7 and 8 for Gland G2 respectively for a sample size of 50. The results 

were generally similar for other sample sizes. 

As mentioned earlier we are interested in the behaviour of these estimators at the boundary 

(left boundary) and in the tails. To assess this, CRMSEi and FCRMSEi for different sample sizes 

n were estimated. As an illustration we present the estimates of FCRMSEi for sample sizes 50 and 

500 for G1 in Figures 9a and 9b respectively. Figures lOa and lOb are corresponding figures for 

G2. These figures suggest that DKE performs better than HTIDS in the tail region for all sample 

sizes, more so for smaller sample sizes. The results for other sample sizes were intermediate. 

From Figures 11 and 12 we see that part of the poorer performance of HTIDS in the tails is 

due to higher bias. 

The MSE expression of the estimate Pi as given by Wang and Van Ryzin [17] is, 

kmax km.. km.. kmax km .. 

E[ L {Pi - Pi}2] = L L W2(i,j,h)p/n - L {L W(i,j,h)pj }2/n + 
i=l i=lj=l i=l j=l 
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kmu kmu 

L {L W(i,j,h)pj - Pi}2 (17) 
i=l j=l 

where Pi is the true p.m.f, W(ij,h) is the weight function, h is the bandwidth and n is the sample 

size. For the the two populations considered viz. Gland G2 we know the true p.m.f. Substituting 

this for Pi in the above equation, the optimal bandwidth can be determined for various sample 

sizes. These bandwidth values are then compared with the corresponding average bandwidths 

obtained from the simulations. These along with the coefficient of variance of bandwidth Cv are 

summarized in Table 2. It can be observed that Cv is smaller for DKE for all the sample sizes for 

Gl and G2. Note that DKE smooths the Geometric distribution data (Gl) more than HTIDS, and 

smmoths the mixture data (G2) less than HTIDS. Also the average bandwidths from DKE are close 

to the MSE optimal bandwidths. This suggests that the bandwidth from DKE is more stable than 

fromHTIDS. 

The behaviour of HTIDS in these simulations is interesting. There is a tendency to 

undersmooth relative to the optimal bandwidth. As a result the boundary bias decreases with n, 

while the tail bias may be high. The higher coefficient of variance of the HTIDS bandwidth 

suggests a higher degree of adaptation to sample attributes. However, this fails to consistently 

provide a lower bias on MSE than DKE. 

The need to choose a bandwidth in the boundary region that is different from the interior 

has been recognized by several researchers (e.g. MUller [9]). Generally variation in h across the 

range of the data, and especially in the tails is needed. The selection of a "local" bandwidth 

considering boundary kernels and tail regions remains an area of research. 
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4. OTHER POSSIBLE ESTIMATORS 

Muller [9] shows how one can develop minimum variance kernels and kernels belonging to 

different smoothness classes for continuous variates. Extensions of these ideas to the discrete case 

is also feasible. Here we outline two such extensions. 

A discrete, minimum variance (DMV), second order kernel can be developed as the 

solution to: 

Subject to: 

i+h 
Minimiz

. . ~ 2 e £.J w .. · 
. J 
J=q 

i+h 
Lw.=1 
. J 
J=q 

i+h 
~).w. =0 
• J J J=q . 

(18) 

(19) 

(20) 

(21) 

where tj=(i-j)lh, ij,h are integers, and q=max(i-h,1), recognizes whether we are in the boundary 

region or the interior. 

A smooth. discrete (DSJ!) kernel of smoothness J! can be defmed by solving the problem: 

i+h-J.1 2 

Minimize ~ (wj +J.1-w} subject to the conditions (19) through (21) above. Solutions to the two 
J=q 

problems defined above can be readily obtained by defining the associated Lagrangian problems 

and solving them for the weights Wj that define the kernel sequence over the appropriate span of 

integers. 

The weight sequences resulting for DMV and DS 1 0.1.=1) for selected values of h, and i are 

compared with the DQ and HTIDS weight sequences in Table 3. In the interior, the HTIDS, DQ 
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and DS 1 weight sequences coincide. This is to be expected since they all converge to the quadratic 

kernel. The DMV sequence degenerates to unifonn weights as expected. An examination of the 

weight sequences in the boundary region shows that the DQ sequences stay closer to the DSl 

sequences than the HT/DS ones. Thus if a computationally fast approximation to the DS 1 

sequences was desired in the boundary region, DQ would be preferred. Note that the DMV 

sequences in the boundary region are still generally closer to the DS 1 than the HTIDS. 

An interesting aspect of the HTIDS sequence is the adaptation of the weight sequence as h 

varies between two integers. We observe that the weight sequences at the intennediate h value are 

not strictly in between the weight sequences at the end points. While this may lead to a high degree 

of adaptability of the HTIDS procedure, it makes it rather difficult to assess its impact on the 

estimation procedure. The high coefficient of variation of the bandwidth selected by HTIDS may be 

related to the nature of the resulting weight sequence. 

The boundary kernels developed by Dong and Simonoff [3] do not correspond to the ones 

presented by MUller [9] for the continuous case. It may be interesting to try the MUller [9] 

boundary kernels, possibly with a floating boundary value, directly with the HT procedure. 

Computational considerations have restricted our Monte Carlo investigations thus far to DQ 

and HT IDS. The relative utility of DMV and DS may be investigated subsequently. Except in the 

boundary region, our limited investigations show that differences between the different kernels 

may not be large. Consequently. kernels that are easier to compute are expedient. In this respect the 

DQ kernels are to be preferred. 

Page 14 Tlte. Feb 21. /995 



r -

L _ 

L _ 

l , 

5. SUMMARY AND CONCLUSIONS 

The estimator presented here was motivated by practical considerations. We offer this 

work in the hope that it will stimulate interest and theoretical development. We show that the 

discrete kernel procedure advocated can give results comparable to those from the HTIDS 

procedure. Computational advantages of the DKE procedure and the similarity of its properties to 

kernel sequences based on smoothness criteria were demonstrated. The relative stability of the 

bandwidth selection procedure and the DQ weight sequence also recommend it as an alternative to 

the HT IDS method. 

We present only one special case (a quadratic kernel in the interior and in the boundary 

region). Clearly other similar higher order kernels can be derived. However, as is typical in the 

kernel smoothing literature, bandwidth selection is likely to be a more tenuous issue than kernel 

'. specification. The LSCV choice of h appears to perform quite satisfactorily for the test cases. 

Extensions to the multivariate case are being investigated. 
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Table 1 
Comparison of ASSE and ASAE 

ASSE ASAE 
DKE PAR HTIDS DKE PAR HTIDS 

Samples generated from G1 (Geometric (rc=0.2» 

n=50 0.0058 0.0008 0.0084 0.2032 0.0816 0.2737 
n = 100 0.0032 0.0006 0.0038 0.1558 0.0599 0.1814 
n=200 0.0019 0.0003 0.0019 0.1183 0.4250 0.1264 
n=300 0.0013 0.0002 0.0012 0.1000 0.0323 0.0987 
n=500 0.0008 0.0000 0.0008 0.0780 0.0226 0.0797 

Samples generated from G2 (0.7* Geometric (rc=O.2)+0.3* Geometric (rc=0.9» 

n=50 0.0080 0.0081 0.2300 0.2481 
n= 100 0.0039 0.0038 0.1676 0.1638 
n=200 0.0021 0.0022 0.1261 0.1194 
n=300 0.0016 0.0016 0.1071 0.0978 
n=500 0.0010 0.0011 0.0855 0.0785 

Note 
PARis the fitted parametric (in this case the fitted Geometric distribution) 
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Table 2 
Bandwidth statistics 

Coefficient of Variation Average Bandwidth 012timal Bandwidth 
from MSE criteria 

DKE HTIDS DKE HTIDS DKE HTIDS 

Sam12Ie from G 1 
n=50 0.349 0.442 6.73 5.48 7.00 8.06 
n= 100 0.305 0.401 6.13 4.97 6.00 8.06 
n=200 0.316 0.361 4.96 4.36 5.00 7.14 
n=300 0.290 0.314 4.51 4.21 4.00 6.25 
n=500 0.275 0.341 4.00 3.47 4.00 5.56 

Sam12Ie from G2 
n=50 0.309 0.291 2.844 3.067 3.00 4.10 
n = 100 0.210 0.220 2.280 2.931 2.00 4.03 
n=200 0.007 0.213 2.020 2.902 2.00 4.03 
n=300 0.000 0.212 2.000 2.912 2.00 4.03 
n=500 0.000 0.214 2.000 2.844 2.00 4.03 
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Interior 
DQ 
HTIDS 
DMV 
DS1 

Boundary 
i = 1 
~ 
HTIDS 

i=2 
~ 
HTIDS 
DMV 
DS1 

i = 3 
~ 
HTIDS 
DMV 
DS1 

Notes: 

h=2 

0,.3,.4,.3,0 
0,.3,.4,.3,0 

0,.33,.33,.33,0 
0,.28, .44,.28,0 

1,0,0 
0,1,0 

0,1,0,0 
0,.63,.37,0 

0,1,0,0 
0,1,0,0 

Table 3 
Comparison of weight sequences 

h=2.5 

0,.11,.25,.29,.25,.11,0 

0,1.7,-.7,0 

0,.62,.45,-.07,0 

0,.28,.35,.28,.08,0 

h=3 

0,.14,.23,.26,.23,.14,0 
0,.14,.23,.26,.23,.14,0 

0,.2,.2,.2,.2, .2,0 
0,.14,.23,.26,.23,.14,0 

.75,.5,-.25,0 
0,.88,.12,0 

0,.75,.5,-.25,0 
0,.5,.4,.1,0 

0,.83,.33,-.16,0 
0,.8,.4,-.2,0 

0,.3,.4,.3,0,0 
0,.28,.32,.28,.12,0 
0,.4,.3,.2,.1,0 

0,.34,.37,.23,.06,0 

i is the point of estimate, on which the kernel is placed, h is the bandwidth. 
DQ, DMV and DS 1 do not admit non integer bandwidths. 
The HTIDS weights correspond to a quadratic kernel, and admits non-integer h. 
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APPENDIX 4C 

Seasonality of Precipitation along a Meridian 
in the Western U.S 

Balaji Rajagopalan and Upmanu Lall 
Utah Water Research Laboratory 

Utah State University, Logan, UT 84322-8200 

Abstract 

We investigate seasonality of daily precipitation along a meridian in the Western U.S. using· 

a nonparametric technique. The occurrence of daily precipitation is treated as a nonhomogeneous 

Poisson process and the time varying intensity function is estimated for every calendar day using a 

kernel estimator. The technique is fully data adaptive. We apply this technique to selected long 

record stations along a meridional transect spanning from Tuscon, AZ to Priest River ID. 

Differences in the seasonality of precipitation occurrence and magnitude are revealed as a function 

of latitude and topographic factors. A monotonic trend in the seasonality of precipitation over the 

, . length of record is also observed. 
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1. Introduction 

Seasonality in hydroclimatic variables is usually related to the unequal heating of the earth's 

surface over the year, particularly as one moves to higher latitudes. Precipitation is an important 

hydrologic variable since it is a primary input into surface hydrologic models. The timing and 

duration of the "seasons" of high precipitation at a site is important since they indicate the form 

(rain or snow) of precipitation as well as the nature of the input "signal" for the surface hydrologic 

system. 

Here we were interested in dynamically visualizing how the seasonality of rainfall varies by 

latitude along a transect in the western U.S. (approx. longitude 1120 W). Long record precipitation 

stations which had essentially complete records were selected from latitude 48° 17' N to latitude 

32° 15' N . We were interested in daily precipitation because of its use for agriculture, crop 

management and forest management. The attributes of interest considered are precipitation 

'magnitude' and 'relative frequency of occurrence'. 

Stochastic precipitation models as well as other hydrologic models often deal with the 

nonstationarity in precipitation and other climatic inputs by dividing the year into a number of 

seasons and then fitting model parameters independently for each season. The leading tenus (one 

or two) of a Fourier series representation of the precipitation data are commonly used to identify 

seasonality, for time varying parameter description and for delineating seasons. 

An attractive alternative to Fourier series methods is provided in this paper. We focus first 

on the rate of occurrence of precipitation as a function of calendar date (1 to 366) within the year. A 

kernel estimator is used to estimate the "rate" of rainfall occurrence of precipitation by calendar 

day, by "smoothing" a binary (lor 0) indicator sequence that represents precipitation occurrence 

on a given day in the historical record. This rate is interpretable as the time varying rate parameter 

of a nonhomogeneous Poisson process. Variation in precipitation magnitude over a 90 day moving 

window is also investigated. 
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An interesting trend in seasonality is exhibited by the stations we analyzed. There appears 

to be a consistent shift in the seasons identified on the basis of precipitation rate. The calendar dates 

associated with the highest and the lowest precipitation rates for a given year appear to move 

forward each year of the record. 

2. Methodology 

Precipitation is an intermittent process. For understanding climatic variations it is often 

useful to consider adaptive representations that allow a smooth, continuous time interpretation of 

precipitation. The Poisson process has been used to describe rainfall occurrence as a point process 

(Waymire and Gupta 1981 a; Cox and Isham, 1980). In the stationary point process, the number 

of events (e.g., the events are occurrence of wet days) n(T) occurring in a duration T is a random 

variable with a Poisson distribution with mean AT: 

p(n(T) = k) = (A T)k e-(AT)Ik! k = 0,1,2 (1) 

where A is called the rate or intensity parameter. Often, it is hard to distinguish between changing 

intensity of the process and event clustering. This situation can be addressed by explicitly allowing 

changing event intensity in the model and consequently, modeling the daily precipitation as a 

nonhomogeneous Poisson process (same as Equation 1 but with a time varying rate parameter A, 

i.e. 1,.('1:), 1: = 1, .. ,366) to capture the changing precipitation pattern over the year. Our thesis here 

is that this time varying rate parameter is a useful indicator of precipitation seasonality at a site. 

Kernel intensity estimators (see Diggle, 1985; Solow, 1991) can be used to estimate 1,.(1:) 

from the record, through an optimal, weighted moving average of the rate of rainfall occurrence 

over time. To form such an estimate, we need to define an appropriate weight function, a span over 
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which to average and a criteria for choosing the weight function and span in an optimal way. Our 

presentation here is informal and is restricted to a description of the estimation process used. 

Daily precipitation data from about a dozen sites spread along Arizona, Utah and Idaho 

were used to estimate the intensity parameter for each day of the historical record. Table 1 

summarizes the site and data information. 

2.1 Estimation Procedure 

We considered the estimation of A(t), for each calendar day 't (1,2, .. ,366), for each year of 

record y. The average across years of the estimates of ACt) provides a measure of the typical 

seasonality at the site. 

The kernel estimator used for AyCt), the rate on calendar day 't, in year y is, 

(2) 

In equation 2, 't (1,2, .. ,366) is the calendar day on which the estimate is required, 'ti,y is 

the index of a calendar day on which there was rain in year y; K(.) is a kernel function which is 

taken to be a positive function that integrates to unity, is symmetric and has finite variance; hy is a 

bandwidth or "scale" parameter (for year y) of the kernel function, that controls the smoothness of 

The estimator in Equation (2) is very similar to a kernel density estimator (see Silverman, 

1986; Scott, 1992). The choice of a kernel function is considered secondary (Silverman, 1986; 

Scott, 1992) to the choice of the bandwidth in terms of the Mean Square Error (MSE) of the 

resulting estimate Ay('t). Different kernels can be made equivalent in this sense through an 

appropriate choice of the bandwidth. Diggle and Marron (1988) show the equivalence between 

density and intensity (or rate) estimation and show that the same bandwidth is optimal in both 
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cases under a mean square error criterion. The "plug in" or recursive bandwidth estimator due to 

Sheather and Jones (1991), has worked the best in our tests for kernel density estimation 

(Rajagopalan et at, 1995). This procedure strives to minimize the average mean integrated square 

error in density estimation through a data driven estimate of the pointwise bias and variance of the 

estimate. We used this procedure to select the bandwidth hy. 

For this study we used the Epanechnikov kernel, given as: 

K(x) = ~(1-x2)2 
4 

't-'t. Ixl :s; 1 where x = __ I 

hy 
(3) 

Periodic boundaries are used for the estimation process by (a) recognizing that dates from 

the end of one year can be within a bandwidth hy of dates in the beginning of the next year, and (b) 

using data from year (y-l) or (y+l) for estimates on days within such a bandwidth in year y. 

The intensity parameter of the nonhomogeneous Poisson process is estimated for each 

calendar day ('t = 1, .. ,366) of each year (1, .. ,y) in the historical record using the estimator in 

Equation (2). Weighted average precipitation for each calendar day of each year in the historical 

record is also estimated using the Epanechnikov weight function with a bandwidth of 90 days. 

4. Results 

The average rate across years and the average weighted precipitation for each calendar day, 

estimated as described above is plotted for all the twelve stations. The x-axis on all the figures is 

the calendar day (Le. 1 to 366), where 1 corresponds to January 1 and 366 to December 31 

l ~ respectively. In all these figures the solid line denotes the average daily rate, and the dotted lines 

indicate the average weighted precipitation. The following observations are offered from the 

figures. 
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1. The average daily rate and the average weighted precipitation fluctuate in about the same way at 

all the stations (see Figures la through 11). Thus, the use of the rate to describe seasonality 

seems to be a useful notion. 

2. Stations in the north of the meridional transect (namely, SNP, PRR, LAK, LOG, SIL,SNC, 

HEB and SPF ) have similar shape of the rate and precipitation curves as can be seen from 

Figures 1a,lb,lc,ld,lf,lg,lh and Ii. These stations seem to have higher than average values 

of the rate function around the fIrst 70 to 100 days and the last 70 to 100 days of the year, with 

the exact number of days varying from station to· station. A similar trend is seen in the 

precipitation. 

3. The curves of rate and precipitation are similar for stations near the southern end of the 

meridional transect (namely, ALT, MIA and TUS) as seen from Figures Ij,lk,ll. These 

stations appear to have high rates during the middle 100 days of the year and increased rates 

during the fIrst and last 30 to 60 days of the year. This is prominent at ALT, and is subdued in 

MIA and TUS. The "wet" seasons in the north appear to correspond to "dry" seasons in the 

South and vice versa. This observation corresponds to the largely zonal flow driven 

winter/spring precipitation in the north, as opposed to the largely convective summer 

precipitation in the South (Ropelewski and Halpert (1986,1987». 

4. Station WOD exhibits an interesting pattern (see Figure Ie). The rate appears to be high during 

day 70 to 130 of the year (Le., in spring) and is low the rest of the time. WOD lies in a rain 

shadow region with respect to the large scale atmospheric flow and hence gets very little 

precipitation during the general wet period and gets all its precipitation during the spring time 

due to local orographic/convective effects. There are two periods with higher than average daily 

precipitation at this station. One that corresponds to the high rate (day 70 through 130) and 

another during day 190 to 290. Apparently this station can receive high convective rainfall in 

the summer/fall even though the number of rainy days is low then. 
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Seasonality trends over this century 

Schneider (1995) reports that D. J. Thomson found significant changes in the timing of 

seasons since around 1940 in the Northern hemisphere by analyzing the 1651-1991 Central 

England temperature record. The seasonality of temperature in the Northern Hemisphere is 

determined by radiative heating which peaks on June 22, and transport of heat from other parts of 

the globe. The peak temperature occurs later in the year as one moves to higher latitudes in the 

Northern hemisphere reflecting the delay in transport of heat. Thomson's thesis is that in an 

atmosphere enriched by Carbon Dioxide, heating and transport of heat are more efficient, and the 

advance in the seasons in the Northern hemisphere is evidence of global warming. 

Consequently, it was of interest to examine changes in the seasonality of precipitation along 

our meridional transect, as reflected by the estimated rate and average weighted precipitation 

amounts. We estimate the average rate for the periods before and after 1950 ( a time approximately 

in the middle of the data sets) at four stations with long records, which are PRP, SAN, MIA and 

TUS, and plot them in Figures 2a,2b, 2c and 2d respectively. In these four figures the thick line is 

the average rate from the entire historical record, the dotted line is the average rate from the 

historical record before 1950 and the dashed line is the average rate from the historical record after 

1950. The average rate curves for the periods before and after 1950 are shifted from the average 

rate curve estimated from the entire historical record. It can be seen that the average rate after 1950 

is shifted to the left (Le., the peaks and valleys are shifted left) relative to the average rate before 

1950. Similar observations can be seen from the above analysis on the average weighted 

precipitation amounts, in Figures 3a,3b,3c and 3d at the four stations PRN,SAN,MIA and TUS 

respectively. 

On observing these patterns in seasonality, we decided to analyze the records to see how 

this shift was occurring over time, i.e., is it a sudden or continuous trend. The calendar day in each 

year on which the estimated rate was maximum and the date on which it was a minimum were 

selected. The maximum (minimum) rate at PRRfTUS occur near the end (or beginning) of the 
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calendar year. Thus a change in seasonality could move this date across calendar year boundaries. 

It is easier to analyze the transition in the date of the maximum rate at PRR and the minimum rate at 

TUS if we change the year boundaries away from these dates. Consequently, the date associated 

with maximum rate at PRR and the minimum rate at TUS is computed on a calendar year that runs 

from July 1 to June 30, rather than Jan. 1 to December 31. The dates for the minimum rate at PRR 

and the maximum rate at TUS are computed using the standard calendar. 

These dates are plotted for two stations PRR and TUS (the northern and the southern 

extremes of our data set), in Figures 4a and 4b for maximum rate and Figures Sa and Sb for 

minimum rates respectively. The line in these figures is a nonparametric smooth fitted by LOWESS 

(Cleveland, 1979). One can see that the date for both the maximum and minImum rates has a 

decreasing trend with year. The nonparametric Mann-Kendall test (Gilbert (1987» for monotonic 

trend showed that these trends were significant (p-values in all cases were of the order of e-10). 

Robust estimates of the linear trend, the Sen slopes (see Gilbert (1987» range from -0.33 to -1 

days per year. We performed the above analysis with the average weighted precipitation and a 

similar behaviour was observed. Results are not presented for brevity. It is rather curious that the 

march of seasons as measured by the precipitation rate and also the average weighted precipitation 

is advancing at these sites at roughly a constant rate over the whole record. 

5. Closure 

The non parametric methods presented here were shown to be useful for identifying 

seasonal variations in precipitation occurrence as a function of latitude and also for variations in 

seasonality across years. For the data sets analyzed, we remarkable differences were seen in the 

timing and duration of the precipitation seasons along the meridional transect selected west of the 

Rockies. An interesting trend in the seasonality across the sites was also identified. If this trend is 

related to global warming it has important implications for the form of precipitation in these areas, 
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and also for crop water requirements in the growing season. Further investigation of such trends 

and their relationship to atmospheric circulation is warranted. 
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TABLE 1 Data Sets Analyzed 

Elevation 
Latitude Longitude (ftaboveMSL] Record Length 

Priest River. Idaho (PRR) 48· 21' N 116' 50' W 2380 1911-1992 

Sandpoint, Idaho [SNP] 48' 17' N 116· 34' W 2100 1910-1992 

Laketown, Utah [LAK] 41· 49' N 111' 19'W 5980 1948-1992 

Logan, Utah [LOG] 41· 45' N Ill· 48' W 4790 1928-1992 

Woodruff, Utah [WOO] 41' 32' N Ill' 09' W 6320 1948-1992 

Silverlake, Utah [SIL] 40' 36' N 111' 35' W 8740 1948-1992 

Snake Creek, Utah [SNC] 40· 33' N 111' 30' W 6010 1928-1992 

Heber, Utah [HEB] 40· 3~' N 111' 25' W 5630 1928-1992 

Spanish Fork, Utah [SPF] 40' 05' N 111' 36' W 4720 1932-1992 

Alton, Utah [AL T] 37' 26' N 112' 29' W 7040 1929-1992 

Miami, Arizona [MIA] 33' 24' N 110' 53' W 3560 1914-1992 

Tucson. Arizona [IDS] 32' 15' N 110' 57' W 2440 1901-1992 

Note: All data sets were obtained from Earth Info. CD-ROM 
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Figure 1. Average daily rate (solid line) and average weighted precipitation (dotted 
line) for each calendar day. at (a) at Priest River, 10. {b} at SandPoint, 10, 
(c) Laketown. UT, (d) Logan. UT, (e) Woodruff, UT, (f) Silverlake. UT, (g) 
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Figure 2. Average daily rate from the entire historical record (solid line), from the 
historical record before 1950 (dotted line) and from the historical record 
after 1950 (dashed line), at (a) Priest River, 10, (b) SandPoint, 10, (c) 
Miami, AZ and (d) Tucson, AZ. 
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APPENDIX 4D 

A Nonhomogeneous Markov Model for Daily 
Precipitation Simulation 

Balaji Rajagopalan, Upmanu Lall and David G. Tarboton 

Utah Water Research Laboratory 
Utah State University 

Logan, Utah, UT -84322-8200 

ABSTRACT 

We present a one step nonhomogeneous Markov model for describing daily precipitation at 

a site. Daily transitions between wet and dry states are considered. The one step, 2x2 transition 

probability matrix is presumed to vary smoothly day by day over the year. The daily transition 

probability matrices are estimated nonparametrically. A kernel estimator is used to estimate the 

transition probabilities through a weighted average of transition counts over a symmetric time 

interval centered at the day of interest. The precipitation amounts on each wet day are simulated 

'. . from the kernel probability density estimated from all wet days that fall within a time interval 

centered on the calendar day of interest over all the years of available historical observations. The 

model is completely data driven. An application to data from Utah is presented. Wet and dry spell 

attributes (specifically the historical and simulated probability mass functions (p.m.fs) of wet and 

dry spell length) appear to be reproduced in our Monte Carlo simulations. Precipitation amount 

statistics are also well reproduced. 
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1. INTRODUCTION 

Markov chains (Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975; Smith and 

Schreiber, 1973) have been a popular method for modeling daily precipitation occurrence. 

Typically a two state (wet or dry), one step model is used, and the state transition probabilities 

(e.g.,., transition from wet a day to a wet day, wet day to a dry day) are estimated from the data. 

One problem with such a description is that the transition probabilities may vary over the year, Le., 

the process of precipitation occurrence is nonstationary.. 

Two approaches are commonly used to address this problem. In the flrst approach, the year 

is divided into periods (or seasons) and the transition probabilities are estimated separately for each 

period. There is an implicit assumption that the occurrence process is stationary over the period. 

This assumption may not be tenable. The second approach is to consider essentially a 

nonhomogeneous Markov process by allowing the transition probabilities to vary sytematically 

over the year, and to model such a variation through a Fourier series expansion (Feyerherm and 

Bark (1965), Woolhiser et al. (1973) and Woolhiser and Pegram (1979». This can be an effective 

approach where adequate data is available, and the seasonality in the precipitation process can be 

captured by a few Fourier series terms. Our nonparametric analyses (Rajagopalan and Lall (1995» 

of the seasonality of precipitation for stations along a meridional transect in the Western United 

States, suggests that sometimes the number of Fourier series terms needed may be large relative to 

the amount of data available. 

In this paper, a nonhomogeneous Markov (NM) model is presented that uses kernel 

methods to estimate a nonhomogeneous transition probability matrix, and to estimate a 

corresponding nonstationary probability density function (p.d.f) of daily precipitation amount. 

Kernel methods are local, weighted averages of the target function (relative frequency of 

occurrence in this case). Since they are capable of approximating a wide variety of target functions 
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with asymptotically vanishing error, and use only data from a "small" neighborhood of the point of 

estimate, they are considered nonparametric. Fourier series methods are shown to be a subset of 

kernel methods by Eubank (1988, sees. 3.4 and 4.1), A review of hydrologic applications of 

nonparametric function estimation methods is provided by Lall (1995). 

A brief description of the Markov chain and its terminology is first presented as a 

background.to motivate our formulation. The general structure of the NM model proposed is next 

outlined with the nonparametric estimators for the transition probabilities. The simulation 

procedure is then outlined. Results from an application of the model to a precipitation data from 

Utah follow. Musings on the results and discussion on limitations of the approach conclude the 

paper. 

2. BACKGROUND 

The basic assumption in a two state Markov Chain model is that the present state (wet or 

l , dry) depends only on the immediate past. The transition probabilities for transitions (i.e., WW, 

WD, DW, DD) between the two states (W or D) are estimated directly from the data through a 

counting process. Two elements of the transition probability matrix are the probability of a dry day 

following a wet day, FwD = aI, and the probability of a wet day following a dry day, PDW = a2. 

The other probabilities, probability of a wet day following a wet day, Pww and the probability of 

a dry day following a dry day, PDD are (1 - al) and (1 - a2) respectively. 

, ' 

Seasonal variations in the transition probabilities can be accounted for by expressing the 

changing transition probabilities through a Fourier series (Woolhiser and Pegram, 1979; Roldan 

and Woolhiser, 1982). As an illustration, the transition probability P(WD) can be expressed as: 

m 

PWD(t) = FWD + L cksin(2rctk:l365 + 8k); t = 1,2, .. ,365 (1) 
k=l 
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where m = the maximum number of harmonics required to describe the seasonal variability of the 

transition probability, PWD is the annual mean value of the parameter, ck is the amplitude, and Sk 

is the phase angle in radians for the kth harmonic. 

The means, amplitudes, and phase angles are estimated by numerical optimization of the 

log likelihood function, as described by Woolhiser and Pegram (1979) and Roldan and Woolhiser 

(1982). Fourier series representations of parameters of a first-order Markov chain for precipitation 

have been used (among others) by Feyerherm and Bark (1965) who used least squares techniques 

for parameter estimation and by Stem and Coe (1984) who formulated the estimation problem as a 

generalized linear model to obtain maximum likelihood estimators. 

The degree of dependence in time is limited by the order (i.e., the number of past days the 

present state is presumed to depend on) of the Markov chain. Feyerharm and Bark (1967) and 

Chin (1977) suggest that the order may need to be seasonally variable as well. Lack of parsimony 

is a drawback of MC models as the order is increased. A number of researchers (Hopkins and 
. 

Robillard (1964), Haan et al (1976), Srikanthan and McMahon (1983), Guzman and Torrez 

(1985» have also stressed the need for multistate MC models that consider the dependence 

between transition probabilities and rainfall amount. In this paper, we shall consider only a two 

state, first order Markov Chain. Extensions to other situations follow in the same spirit. 

3. MODEL FORMULATION 

The NM model that we present allows the one step transition probability matrix to change 

over each day thus capturing the day to day variation in the occurrence process in a natural manner. 

The daily transition probability matrices are estimated using a discrete kernel estimator, which we 

describe in the following section. Daily precipitation occurrence sequences are then simulated using 

the transition probability matrices. To complete the model, precipitation amounts on each wet day 
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are simulated from the nonparametric probability density estimated from all wet days that fall 

within a time interval or bandwidth centered on the calendar day of interest over all the years of 

available historical record. The model is completely data driven. 

3.1 Transition Probabilities and their Estimation 

The precipitation occurrence process is shown in figure 1. From the daily precipitation 

record we can obtain four types of data, (for illustration refer to figure 1) which are, (1) the day 

indices twl' tW2, .. ,twnw of nw wet days; (2) the day indices tdl' td2, .. ,tdnd of nd dry days; (3) 

the day indices twdJ. twd2, .. ,twdnwd of the nwd days on which a transition occurs from wet to 

dry, meaning days twd l' twd2' ... are wet and days twd1 +1, twd2+ 1 ... are dry; (4) the day 

indices tdwl' tdw2, .. ,tdwndw of the ndw days on which a transition occurs from dry to wet, 

meaning days tdw l' tdw2' ... are dry and days tdw 1 + 1, !dw2 + 1 ... are wet. A day index refers 

to a number between 1 to 366, representing the calendar day of the observation. From these we 

estimate the transition probabilities Pwd(t) (probability of transition from a wet day on calendar day 

t to a dry day on calendar day t+1), Pdw(t) (probability of transition from a dry day on calendar 

day t to a wet day on calendar day t+1). The other two transition probabilities (namely Pww(t) and 

Pdd(t» can be estimated directly from the relations Pwd(t) + Pww(t) = 1 and Pdw(t) + Pdd(t) = 1. 

The transition probabilities for calendar day t are estimated from the data using discrete 

nonparametric kernel estimators. 

For a traditional Markov chain the transition probabilities are estimated simply as the ratio 

of the number of transitions in the historical record to the number of wet or dry days in the 

historical record, as appropriate. Here,we try to localize such estimates about the calendar day of 

interest using kernel estimators. The general idea is that the events (Le., a wet or dry day, or a state 

transition) occurring near the calendar day of interest should be given more weightage while the 
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ones further away should be given a lower weightage. The resulting kernel estimators for the 

transition probabilities Pwd(t) and Pdw(t) are given as: 

(2) 

(3) 

where nwd is the number of transitions in the historical record from wet day to dry day, ndw is 

the number of transitions in the historical record from dry day to wet day, nd is the number of dry 

days in the historical record, nw is the number of wet days in the historical record, K(.) is the 

kernel function (or weight function) and h(.) is a kernel bandwidth, t is the calendar day of interest 

and the t(.)'S have the definitions described earlier. Note that the estimates on any calendar day t 

are obtained by using the information from days in the range [t - h(.), t + h(.)]. Note that the 

definition of calendar dates is periodic, i.e. day 365 and day 1 are recognized as 1 day apart for a 

non-leap year. The contribution to the estimate of an event that lies within this range is determined 

by the kernel or weight function K(.), that is described below. 

Since we have a discrete situation (i.e. each day being discrete) we use the discrete kernel 

developed by Rajagopalan and Lall (1995) as: 

(4) 
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where x =(t-t(.))Ih(.), measures how far an event t(.), that lies within a bandwidth h(.) of the day t, 

is from t; and h(.) is an integer. 

The kernel in (3) was derived from the consideration that the sum of all weights ascribed to 

1 
events that lie within a bandwidth h(.) of t sum to 1, i.e., 2: K(x) = 1; that the weights be 

x=-l 
1 

symmetric on either side of t, i.e. 2: xK(x) = 0; that each weight be positive; and the resulting 
x=-l 

estimate of probability have minimum mean square error. 

The estimators in equations 2 and 3 are fully defmed once the respective bandwidths are 

specified. We choose the bandwidth using the Least Squared Cross Validation (LSCV) procedure 

(Scott, 1992, p. 225), where the bandwidth is chosen that minimizes a LSCV function which is 

given as 

n 

LSCV(h) = * L (1 - P -q(ti) )2 (5) 
i = 1 

where P-t·(q) is the estimate of the transition probability (Pwd or Pdw) on day ti dropping the 
1 

information on day ti, n is the number of observations (ndw or nwd)' Here we assume a prior 

probability of transition to be 1 on the days on which transitions have occurred hence the 1 in the 

equation 5. The bandwidth is searched from 1 to 182 (length of half year). Once the transition 

probabilities are estimated for each day in the historical record the simulation of the precipitation 

occurrence for each day using the transition probability matrix of the previous day is possible. 

3.2 Precipitation amount generation 

Precipitation amounts for the wet days are generated from a kernel probability density 

estimated from all wet days that fall within a time interval or bandwidth centered on the calendar 
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day of interest over all the years of historical record. This amounts to two steps (1) choosing the 

time interval or bandwidth and (2) generating from the kernel estimated p.d.f. 

An appropriate bandwidth for localizing the estimate of the probability density of 

precipitation amount may be obtained by determining the bandwidth appropriate for estimating the 

probability that a day is wet. If the probability of daily precipitation is low, the precipitation data 

will be sparse, and the bandwidth needed for stabilizing the variance of the estimated probability 

distribution of precipitation will be large. Conversely, as the probability of daily precipitation is 

high, a large number of days with precipitation will occur' and the bandwidth needed to localize the 

estimate can be smaller. 

Consequently, we first consider the smoothing of the proportion of wet days (Pt = ntlNT, 

nt is the number of times calender day t was wet; NT is the total number of calendar day t in the 

historical record) on each calendar day t = 1,2, .. ,366. These raw proportions are smoothed using 

the discrete kernel (DK) estimator of Rajagopalan and Lall (1995) which in this case is: 

366 t' 
Pt = L K(h-J) Pj 

j=l P 

(6) 

where K(.) is the discrete kernel as defined by equation 3, and hp is the bandwidth that we are 

interested in. The bandwidth hp can be obtained using the LSCY procedure similar to equation (5) 

as given by Rajagopalan and Lall (1995) as: 

366 366 

LSCY(hp) = L (Pt)2 - 2 L P-t Pt (7) 
t= I t=l 

where, P-t is the estimate of the calendar day t, by dropping the information on that day. 
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Once we estimate the time interval hp the next step is to pick the precipitation amounts on 

all the wet days that fall within the time interval hp from the day of interest in all the years of the 

historical record. Let us say that the precipitation amounts so picked from the historical records are 

y 1 ,y 2 , .. ,y np and tl,t2, .. ,tnp are the corresponding calendar day index. The task now is to 

generate precipitation amount for the calendar day t, which is a wet day. This can be accomplished 

by fitting a conditional p.d.f f(ylt) (see equation 10) and then simulating from it. This step is 

carried out for each wet day that is simulated. Before describing the simulation procedure we 

introduce a kernel density estimator for continuous variables which is given as: 

" 1 np Y y' 
fey) =- L Kc(L:.ll) 

hy np i=l hy 
(8) 

where Kc(.) is a univariate, continuous kernel, and hy is the bandwidth. Here we use the 

Epanechnikov kernel given by : 

Kc(x) = 0.75(1. - x2) for Ixl ~ 1 (9) 

= O. otherwise 

where x = y - Yi. For a detailed exposition of kernel density estimation for continuous variables 
hy 

and issues relating to bandwidth selection we refer the reader to Silverman, (1986), Scott (1992), 

and for kernel density estimation methods with specific application to precipitation modeling we 

refer to Lall et al. (1995) and Rajagopalan et al. (1995). 

A logarithmic transform of the precipitation data prior to density estimation is often 

considered. Such a transformation is also attractive in the kernel density estimation (k.d.e) 

context. Since it can provide an automatic degree of adaptability of the bandwidth (in real space). 
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This alleviates the need to choose variable bandwidths with heavily skewed data, and also 

alleviates problems that the k.d.e. has with p.d.f. estimates near the boundary (e.g.,., the origin) 

of the sample space. The resulting k.d.e. can be written as: 

(10) 

where hL Y is the bandwidth of the log transformed data. !ills is chosen using a recursive approach 

due to Sheather and Jones (1991) (SJ) to minimize the Mean Integrated Square Error (MISE) and 

recommended by Rajagopalan et al. (1995) typically for precipitation data. 

The two step procedure discussed above can be more formally considered through the 

conditional p.d.f. f(Ylt), defined using a product kernel representation as: 

(11) 

Equation 11, states that the conditional probability density of a rainfall amount y on 

calendar day t is obtained by considering a window of width hp centered at t, weighting the 

precipitation amounts on wet days that fall within this window using the kernel K(.), and then 

forming a density estimate by further weighting these amounts with the kernel Kc(')' Strictly 

speaking, the bandwidths hp and hL y should be chosen by optimizing a criteria relevant to the 

conditional density. The description of our procedure given earlier shows that we are essentially 

choosing these bandwidths independently. McLachlan (1992, p. 306-308), discusses the 

simultaneous selection of bandwidths in each coordinate, versus the use of the optimal univariate 

bandwidths in each direction. It is not clear that the additional effort of simultaneous selection of 

the two bandwidths is justified. Consequently, we choose the bandwidths hL y and hp by the 
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methods described for the univariate case. Rajagopalan et al (1995) show that bandwidths selected 

in this way are often satisfactory. For simulation from the kernel estimated p.d.f. (such as 

equation (11)) it is not necessary to explicitly estimate the density f(ylt). The estimation of the 

bandwidths hL y and hp and subsequent perturbation of the historical data is sufficient. 

3.3 Simulation Procedure 

The simulation procedure from the NM model can be described in the following steps. 

1. From the historical precipitation sequence evaluate the transition probabilities (Pwd(t), Pww(t), 

P dw(t) and P dd(t)) for each calendar day t using the estimators described in section 3.1. 

Similarly evaluate the probability density function for precipitation amount on day t using the 

procedure described in section 3.2. 

2. Start the simulation with a wet or dry day (deciding by generating a uniform random number U 

in [0,1], if U ~ 0.5 then wet else dry). 

3. The precipitation state for the next day is simulated from the transition probability matrix for the 

current day (as estimated in step I). 

4. Precipitation amounts on wet days are generated following the process illustrated in figure 2, 

that is described below: 

(i) Pick all the wet day precipitation amounts (e.g.,., y l'Y2''''y np) from all the years in the 

historical record that fall within the window hp centered on the corresponding calender day of 

interest and also the corresponding calendar day indices t I ,t2, .. ,tnp' 

(ii) For the calendar day of interest, pick a historical wet day to perturb using the bandwidth hp 

and the kernel K(x) to specify the resampling metric. Recall that the kernel function describes 

the weight given to each calendar day that lies within hp of calendar day t, that depend on the 

"distance" between the two dates relative to the bandwidth hp' and the kernel function given in 

equation (4). Let the wei.&hts associated with each of np wet days that are thus identified be 
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wt1,wt2, .. ,wtnp· Now generate a random integer j between 1 and np from a probability metric 

given by these weights. 

(iv)The simulated precipitation amount is y* = exp(log(Yj)+UhLY) where Yj is the precipitation 

on the historical day point picked to be perturbed. The random variate U is generated from the 

probability density corresponding to the kernel function Kc(.). As mentioned earlier, we have 

used the Epanechnikov kernel in this study and simulation from this kernel is easily 

accomplished using the two step procedure described in Silverman (1986, p. 143) 

5. The process (steps 3 and 4) is repeated day by day until the desired length of record is 

generated. 

4. MODEL APPLICATION 

The model described was applied to daily rainfall data from Salt Lake City in Utah. Thirty 

years of daily weather data was available from the period 1961-1991. Salt Lake City is at 400 46' N 

latitude, 1110 58' W longitude and at an elevation of 1288 m. Most of the precipitation comes in 

the form of winter snow. Rainfall occurs mainly in Spring. with some in Fall. 

We shall first list some measures of performance that were used to compare the historical 

record and the model simulated record, and then outline the experimental design. The aim here is to 

capture the frequency structure of the events (Le. the underlying p.d.l) which then amounts to the 

reproduction of all the statistics. By events we mean the wet spell lengths, dry spell lengths and the 

wet day precipitation. The wet and dry spell lengths are defined as the successive wet or dry days. 

Clearly the wet spell lengths and dry spell lengths are defined through the set of integers greater 

than 1. We look at the model performance both at the seasonal scale and the annual scale. For the 

seasonal scale comparison we have the year divided into four seasons: Winter or Season 1 (Jan­

Mar), Spring or Season 2 (Apr - lun), Summer or Season 3 (Jul- Sep). and Fall or Season 4 (Oct 

- Dec). 
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4.1 Performance measures 

1. Probability mass function of wet spell length, dry spell length and probability density function 

of wet day precipitation in each season and annual. 

2. Mean of wet spell length, dry spell length and wet day precipitation in each season and annual. 

3. Standard deviation of wet spell length, dry speUlength and wet day precipitation in each season 

and annual. 

4. Length of longest wet spell and dry spell in each season and annual. 

5. Maximum wet day precipitation in each season and annual. 

6. Percentage of yearly precipitation in each season and annual. 

7. Fraction of wet and dry days in each season annual. 

4.2 Experiment design 

Our purpose here is to test the utility of the NM model. The main steps involved in this are: 

1. Thirty sets of synthetic records of thirty years each (Le. the historical record length) are 

simulated using the NM model. 

2. The statistics of interest are computed for each simulated record, for each season, and are 

compared to statistics of the historical record using boxplots. The p.m.f.'s of wet and dry spell 

lengths are estimated using the Discrete Kemel estimator of Rajagopalan and Lall (1995) (same 

as the estimator in equation (6)) and the p.d.fs of the wet day precipitation is estimated using 

the estimator in equation (10). The statistics listed in section 4.1 are computed for the simulated 

record and compared with those of the historical record. 
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5. RESULTS 

In this section we present comparative results (using the performance measures listed in 

section 4.1) of the NM model for the Salt Lake City data. The p.m.fs/p.d.fs of the simulated 

records are compared with those for the historical record using boxplots while other statistics are 

summarized in Tables 1,2 and 3. A box in the boxplots (e.g.,. Figure 3) indicates the interquartile 

range of the statistic computed from thirty simulations, the line in the middle of the box indicates 

the median simulated value. The solid lines correspond to the stirtistic of the historical record. The 

boxplots show the range of variation in the statistics from the simulations and also show the 

capability of the simulations to reproduce historical statistics. The plots of the p.d.fo's are truncated 

to show a common range across seasons and to highlight differences near the origin (mode). 

Figure 3 shows the boxplots of kernel estimated p.d.f.'s of simulated data of wet day 

precipitation and the historical data. It can be seen that the historical p.d.f.'s are very well 

reproduced by the simulations in all the four seasons. The other statistics are also seen to be well 

reproduced by the model for all the seasons and also annual, as can be noticed from table 1. 

Boxplots of kernel estimated p.m.fo's of simulated data of wet spell length are found to 

enclose the p.m.f of the historical data of wet spell length for all the four seasons in figure 4 and 

for the annual in figure 5. The other statistics are also preserved quite well by the simulations, as 

seen from table 2. Good performance of the model in reproducing the dry spell statistics can be 

seen from figures 6 and 7 and also from table 3. The coefficient of skew, and the coefficient of 

variation, the 25% quantile and the 75% quantile were also preserved for all the three variables, but 

are not shown here. 

The extreme statistics (e.g.,. longest spell length or maximum wet day precipitation) exhibit 

a high degree of variability in the simulations (refer tables 1,2 and 3) and an asymmetric sampling 

distribution, as one would expect. 

Page 14 Tue. Feb 21, 1995 



, -

L • 

L_ 

Note that none of the statistics that we have listed in section 4.1 are explicitly or implicitly 

considered in the model. Hence the good reproduction of p.d.f.'slp.m.f.'s of the three variables, is 

quite heartening. 

6. SUMMARY AND CONCLUSIONS 

A nonhomogeneous Markov model for simulating daily precipitation is presented in this 

paper. The traditional Markov chain model is extended to consider the a smooth variation in the 

transition probabilities from day to day, thus attempting to capture the nonstationarity in the 

precipitation occurrence process. The 2x2 daily transition probability matrix is estimated 

nonparanietrically. The primary intended use of the model is as a simulator that is faithful to the 

historical data sequence, obviating the need to divide the year into seasons and subsequently fitting 

the Markov chain parameters separately for each season. Simulations from the model are shown to 

preserve the frequency structure ( p.d.flp.m.t) of the wet spell length, dry spell length and wet day 

precipitation at both the seasonal and annual time scales. 

In many cases, the Fourier series approach to addressing seasonal variation in Markov 

Chain parameters may be just as effective. Recall that the Fourier series approach can be shown to 

be a subset of the kernel approach with a specific kernel choice. The kernel approach presented 

here is attractive because it is relatively parsimonious, locally adaptive, and extends quite naturally 

to localizing the probability density estimation for precipitation amount as well. Extensions to 

higher order chains or those with more states follow directly. One needs to define the appropriate 

events as was done here and go through the solution of the corresponding smoothing problem. 
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Table 1 

Statistics of wet day precipitation for Salt Lake City, UT, 1961-1991 
from historical precipitation record and averaged over 30 simulated precipitation records 

mean wet std. dev. fraction of maximum 
day ppt. wet day ppt. yearly ppt. wet day ppt. 
(inches) (inches) (inches) 

Season 1 
25 % quantile 0.16 0.19 0.23 1.26 
Median 0.16 0.20 0.23 1.36 
75% quantile 0.17 0.21 0.24 1.59 
historical 0.15 0.17 0.21 0.92 

Season 2 
25 % quantile 0.19 0.24 0.26 1.74 
Median 0.19 0.25 0.27 1.86 
75% quantile 0.20 0.26 0.28 2.18 
historical 0.20 0.24 0.28 1.62 

Season 3 
25% quantile 0.18 0.27 0.24 1.94 
Median 0.18 0.28 0.26 2.3 
75% quantile 0.19 0.30 0.26 2.87 , -

historical 0.18 0.29 0.26 2.28 

Season 4 
25% quantile 0.16 0.19 0.24 1.37 
Median 0.17 0.21 0.24 1.7 
75% quantile 0.18 0.23 0.25 2.16 
historical 0.17 0.19 0.25 1.23 

Annual 
25% quantile 0.18 0.24 2.35 
Median 0.18 0.25 2.55 
75% quantile 0.19 0.25 3.45 
historical 0.17 0.22 2.30 
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Table 2 

Statistics of wet spell length for Salt Lake City. UT, 1961-1991 
from historical precipitation record and averaged over 30 simulated precipitation records 

mean wet std. dev. fraction of longest wet 
spell length wet spell wet days spell length 

(days) (days) (days) 

Season 1 
25% quantile 1.89 1.29 0.31 9 
Median 1.92 1.37 0.32 10 
75% quantile 1.99 1.43 0.33 11.8 
historical 1.86 1.29 0.32 10 

Season 2 
25% quantile 1.87 1.27 0.25 8 
Median 1.91 1.34 0.25 9 
75% quantile 1.95 1.41 0.26 10 
historical 2.12 1.47 0.27 12 

Season 3 
25 % quantile 1.79 1.23 0.19 8 
Median 1.86 1.29 0.20 9 
75% quantile 1.91 1.37 0.20 10 
historical 1.60 0.9 0.18 . 7 

Season 4 
25% quantile 1.85 1.27 0.25 8 
Median 1.87 1.32 0.26 9 
75% quantile 1.92 1.38 0.27 10 
historical 1.97 1.36 0.26 9 

Annual 
25% quantile 1.88 1.32 0.26 10 
Median 1.91 1.36 0.26 11 
75% quantile 1.94 1.39 0.26 13 
historical 1.91 1.31 0.26 12 
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r' 
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Table 3 

Statistics of dry spell length for Salt Lake City, UT, 1961-1991 
from historical precipitation record and averaged over 30 simulated precipitation records 

mean dry std. dev. fraction of longest dry 
spell length dry spell dry days spell length 

(days) (days) (days) 

Season 1 
25% quantile 3.8 3.5 0.67 23 
Median 3.92 3.63 0.68 25 
75% quantile 4.0 3.75 0.68 27 
historical 3.91 3.64 0.68 30 

Season 2 
25 % quantile 5.21 5.64 0.74 39 
Median 5.48 5.91 0.75 46 
75% quantile 5.59 6.25 0.76 50 
historical 5.5 5.41 0.73 28 

Season 3 
25 % quantile 6.82 7.12 0.79 44 
Median 7.05 7.53 0.80 52 
75% quantile 7.26 7.943 0.81 72 
historical 6.87 6.92 0.82 55 

Season 4 
25% quantile 4.91 5.47 0.73 38 
Median 5.09 5.71 0.74 43 
75% quantile 5.28 5.91 0.75 51 
historical 5.21 5.38 0.74 31 

Annual 

25% quantile 5.29 6.13 0.74 58 
Median 5.41 6.32 0.74 70 
75% quantile 5.54 6.67 0.74 86 
historical 5.45 5.99 0.74 61 
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td.v 
1 

tl,t2"" are the day indices 
tw1,tw2, .. are wet day indices 

tc!1,tc!2'.' are dry day indices 

tv,d 
1 

tc!w l,tc!w2". are day indices of transition from a dry day to wet day 

twdl'~d2'" are the day indices ?ftransition from a wet day to dry day 

Figure 1. Precipitation occurrence process. 
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t is the calendar day on which precipitation is required 
hp is the time interval around the calendar day t 
1 ••..• N are the years in the historical record 
Thick dots are the rainy days in the historical record 

1 

The kernel function shown at the bottom is used to weight the rainfall amounts on each of the 
rainy day. 

Figure 2. Precipitation generation process. 
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Figure 3. Boxplots of p.d.f of wet day precipitation in each season, for model 
simulated records along with the historical values. 
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Figure 4. Boxplots of p.m.f. of wet spell length in each season, for model simulated 
records along with the historical values. 
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Figure 5. Boxplots of p.m.f. of wet spell length over the whole year, for model 
simulated records along with the historical values. 
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Figure 6. Boxplots of p.m.f. of dry spell length in each season, for model simulated 
records along with the historical values. 
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Figure 7. Boxplots of p.m.f. of dry spell length over the whole year, for model 
simulated records along with the historical values. 
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