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CHAPTER 1

INTRODUCTION
1.1 OBJECTIVE

The overall objective of this project is to develop a procedure for- generahng representative historical
and synthetic climate sequences at ungaged locations throughout the mountainous Western United
States. As a secondary objective, we are also developing a snowpack simulation model. The Utah Water
Research Laboratory (UWRL) is conducting this project under a research joint venture agreément with
the U.S. Forest Service (USFS) as part of the USFS Watershed and Erosion Prediction Project (WEPP).

This work is part of a USFS research and development effort and, as such, must provide a usable
product within the project schedules established by the USFS. The MCLIGEN, which is being developed
by the UWRL, will furnish climate inputs to the WEPP with the goal that acceptably accurate erosion
predictions are provided for design and planning purposes. The representation of climate in
mountainous areas is a major challenge because climatological data are scarce and meaningful
interpolation of climate variables is difficult in complex terrain. The project is using existing techniques

which provide adequate climate inputs, adapting existing procedures where appropriate, and developing
new procedures within the constraints of available data and project resources.

Although MCLIGEN is being developed under the WEPP project for erosion prediction, it will have
many other applications of interest to the USFS and other resource agencies. For example, the climate
sequences would be useful for driving ecological models or resource assessment procedures which
require climate inputs. MCLIGEN will also have the capability to be run under climate change scenarios.

1.2 USER REQUIREMENTS
The WEPP user will need these "climate seqﬁences" accessible in three "event forms."

»  Selected representative historical events or sequences (e.g., average, dry, and wet). This capability
would enable users to make erosion estimates for climate sequences based on historical events
either as observed or as outputs from the climate modeling system. In the first case, the user
could select a recorded event or sequence of data from a station or-stations which the user
considers best represents the conditions at the site which is under evaluation. In the second
case, the modeling system would adjust recorded historical events to be representative of
ungaged locations. ) :

*  Continuous simulation of climate for up to 20-year periods using stochastic methods. This will be
particularly useful in assessing the erosion potential from timber harvest areas, and it could be
used to estimate a probability distribution of erosion potential, average potentials, or perhaps
high or low extreme climate cases. High cases could be useful for design of sediment control
measures, such as detention basins.

¢ Design events associated with various occurrence frequencies or return periods.



Users will choose the form of climate input which they use. UWRL work is focused on the first and
second forms listed above. The generator will have the capability of providing climate inputs based on
locational information (such as latitude, longitude, elevation, slope, and aspect).

1.3 TECHNICAL APPROACH

MCLIGEN will depend on historical, physically based interpolations of weather sequences from a
mesoscale-climate modeling system which is comprised of four nested layers:

An existing synoptic scale forecast model (300 x 300 kmy);
A regional scale climate model (50 x 50 km);

A local scale climate model (10 x 10 km); and

A specific point climate predictor, referred to as "ZOOM."
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Two additional MCLIGEN components are:

5.  Alocal scale stochastic climate generator; and
6. A point energy balance snowmelt model.

We will provide the USFS with a database for the Western U.S. consisting of 13.4 years of climate data
on a 50-km grid from the second layer model. Itis anticipated that this database will be maintained at the
regional level of the USFS, and that 13.4-year sequences of 10 x 10 km data could be provided for each
forest using the local scale climate model. The 10 x 10 km datasets will be used for input to ZOOM,
which will provide climate data at any point on a watershed subarea for which erosion analyses are being
made. These climate data will be inputs to the hydrologic, snowpack, and erosion prediction components
of WEPP. ZOOM, the local scale climate simulator, and the 60-km resolution climate database are the
project deliverables from this part of our work. The RegCM2 model and the ECMWTF synoptic data set
can also be provided if desired.

Stochastically generated sequences of climate variables are also required to run WEPP. We are
developing and testing a nonparametric wet/dry spell stochastic model for daily precipitation. Initially,
historical-climate data are being modeled, but as generated climate data from the climate modeling
system become available they will be modeled via the input variables to ZOOM.

The snowpack simulation model will need to meet some requirements which other snowpack models
have not been demonstrated to meet. Specifically, the snowpack simulation model should provide
snowmelt predictions which represent the characteristics of snowmelt events which are important for
accurate erosion predictions. Also, the model should be a transportable model which will work well for
the variety of conditions which exist across the Western U.S., and the model should be physically based
so that it will require a minimum of calibration for local conditions. This last requirement is particularly
important because WEPP users may not always have the expertise to calibrate the snowpack model. The
snowpack simulation model is being developed by combining the best components of existing energy
balance models with improvements which we are developing at the UWRL.

1.4 PROJECT STATUS

Three developmental phases were defined in the work plan submitted to the USFS on September 8,
1989:



Phase I Climate data evaluation and generator design.
Phase II: MCLIGEN coding and evaluation at representative sites.
Phase III: Generalization to the entire Western United States.

Work undertaken during this funding period, beginning Iam.iafy 1, 1994 and January 31, 1995, is part
of Phase II. R

Tasks remaining to complete work are presented in the last sections of Chapters 2, 3, and 4. The
interrelationship between these tasks is illustrated in Figure 1--1. Tasks are divided into three increments

according to funding availability. Funding for increment I was secured, and work was conducted in the
period ending January 31, 1995. The schedule for increment II tasks is based on a January 31, 1996

completion.

Papers presented on work conducted under this project during the reporting period are listed below:

1.5 OUTLINE OF REPORT

The report is divided into four chapters and an executive summary. Chapfers 2, 3, and 4 address the
three major parts of work: climate modeling system, snowpack modeling, and stochastic modeling. Each
T chapter includes a literature review, discussion of the proposed methodology, and description of work

plan.
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CHAPTER 2

CLIMATE MODELING SYSTEM
2.1 OBJ.ECTIVE FOR THIS REPORTING PERIOD .

The objective established for the current reporting period was t6 complete the development of the
RecCM2 all-season model for use in developing the MCLIGEN model, to test the RegCM2 model to the
western U.S. Forest Service study area, to refine the model to generate valid climate’ parameters at 10 km
resolution and to test it at 10-km resolution over a 360 x 370 km application area.

2.2 TASKS

The following tasks were established for the current reporting period:

1. Complete the regional RegCM2 (50 km) model run for the period, December 1978 to July 1992,
for the Western United States. NCAR was to do the computing for the 10 year period between
1982 to 1992, and we were committed to provide the end periods.

2.  Complete a local RegCM2 (10 km) model run for the period, December 1978 to ]uly 1992, for the
Bear River Basin in Utah, Idaho, and Wyoming,.

3.  Validate the performance of ZOOM and the 10 km Bear River Basin run through
a.) Validating the 10 km model for the whole Bear River Basin.
b.) Incorporation of the WEPP soils model and the USU snow model into ZOOM.

c) Intercomparison of the performance of the BATS soils and snow submodels with the
WEPP soil model and the USU snow model to determine if the models significantly affect
the calculation of local climate variables.

d.) Comparison of the BATS soil and snow submodels, the WEPP soils model, and the USUS
snow model, each driven by ZOOM climate data, with the snow course, SNOTEL,
RAWS, and satellite data for all seasons.

4. Evaluate the regional and local model output through comparisons with data from NOAA Coop
Stations, SNOTEL, RAWS, NWS rawinsonde data, and satellite data. (Funding for thls taskwas
not received as part of the first increment of FY 94 funding.) ’

2.3 ACCOMPLISHMENTS AND PRO_BLEMS

Last year’s report includes a good overview of the climate mo&éﬁng system. Appendix D, a preprint
from our presentation to the American Meteorological Society (AMS) meeting in Dallas TX, also presents
an overview of the MCLIGEN climate modeling system, driving a distributed hydrological model.

The Regional run (50 km) is only about 60% completed. However, we have had to shoulder this
entire task. At the beginning of the year, we anticipated doing the computing for only about 2.5 years of
this 13 year period, while NCAR completed the rest of the run. After completing a significant portion of
their run, NCAR discovered a mistake that rendered much of their effort invalid. Consequently, we have
had to use a significant portion of our computing resources to complete this task. To date, we have
completed over half of the regional (50 km) Western U.5. RegCM2 run, and roughly a third of the local
scale (10 km) RegCM2 run (see sections 2.3.2 and 2.3.3 respectively). To allow us to complete the 50 km
run in the next couple of months, we have broken it up into chunks, and we are running each segment on
a separate machine.



Durning the year, we have improved and debugged much of the process (including RegCM2 itself
and it's input and output support programs) (see section 2.3.1). We have developed a parallel version of
RegCM2 that has significantly cut linear CPU time (see Appendix B). We have been confronted with
some significant challenges in trying to maintain reasonable accuracy in the 10 km modeling (see sections
2.3.3 and 2.5.2 for details). Through out the year, we have visually quality controlled every byte of each
days model run. In this way we have avoided serious mistakes, like the one that cost NCAR so dearly.
Early on, we invested in the development of a visual data display system that lets us view each days
output in a video format. Several significant model limitations have been identified and corrected using
this technique. We have begun the task of actually comparing surface climate data to the modeling
process (see section 2.3.5). '

A summary of the significant developments is listed below:
Loss of the 10 years of 50 km model output being contributed by NCAR.

Because, of the long CPU run times of both the 50 and 10 km runs, we realized that we could not
afford to wait until we had all the problems solved with RegCM2 to proceed. So we have had to make
changes to the model while running. We have documented when these changes occur and their nature.

To effectively use our many available workstations, we have split the long runs up into shorter
segments, and overlapped these segment to minimize startup transcients in the runs.

Because, of the need to concentrate on getting the highest quality regional and local scale climate runs
in a timely fashion, we have concentrated our resources on the RegCM2 runs. Paul Swetik, Charlie Luce,
and Jeff Blatt have begun efforts on constructing WEPP/ZOOM and we detail this progress and ours in
section 2.3.4.

2.3.1 MCLIGEN Climate Model System Development

Over the past year we have worked on three general area's of development in the MCLIGEN
modeling system. The first area is development of the RegCM2 model, the second is the development of
a parallel version of RegCM2, and the third is creation/development of support programs for RegCM2.
Developing a parallel version of RegCM2 has been critical in total wall clock time to complete the model
runs in a reasonable amount of time. The changes to the model have been important in improving the
performance when diffishencies were oberved in the output. The support programs have helped our
understanding of problems in the model, validating model output, processing boundary condition data
and in getting the model started. ’

1. Changes to RegCM2. There have been several changes necissary to the model as we have been
using it. As there is not a need to go into the details here, we will just mention a few areas
where changes were made. These include:

Double Precision RegCM2.
Changes in output files.
Changes in output BATS variables.

Changes as suggested by NCAR that impliment the Holtslag Planetary Boundary Layer
(PBL) routine.

Change to fractional vegetation cover.
Change in leaf temperature calculation,

2. Parallel RegCM2. We have developed a preliminary parallel version of RegCM2 that has
speeded up the processing by up to 10X the original rate. We presented this work at the
American Geophysical Meeting (AGU) meeting in San Fransico and we reprint the details of our
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AGU poster in Appendix B. We just point out that the current version of parallel RegCM2 is the
first phase of the changes that are needed to optimise this process. We are now working on a
fully parallel version of RegCM2. To make the model run efficently on multiple processors we
need to modularize the TEND routine, which currently has 80% of the code. This would allow
us to split the job into smaller chuncks than is now possible. The other note we make is that our
work with parallel RegCM2 has caught the interest of Cray Research Corp. and Tony Meys of
Cray Research has given us some free CPU time on a Cray C-90 to develop a parallel version of
RegCM2 for the Cray. They have also promised us a few evening sessions on the C-90 where we
would have the machine to ourselves. Preliminary estimates suggest in one sessmn we may be
able to run up to a half a years worth of climate runs.

2. Creation of Support programs for RegCM2.

2.1 Creation of video program/Color plotting. We spent considerable effort creating a
program to animate the model data in a 3D color visualization format. This has been
instrumental in understanding the model output, and fixing errors. It has also been cost-
effective way for initial verfication of the model output. Ensuring that the model is
progressing and giving reasonable output qualitativly. This effort was also presented at
the fall-94 AGU meeting (See Appendix C).

22 Creation of program to set Initial snow depth. We also have spent effort developing a
program to set the initial snow depth for both the 50 km and 10 km runs. This program
uses snow depth vs. elevation curves for various regions as well as using. SNOTEL and
NOAA /COOP station data to set values where data is available. This was important
since the ECMWF data starts in December when snow depth is significant. Without
setting the initial snow depth the first water year becomes useless without some
reasonable values for a starting snowpack.

2.3.2 Regional Scale Climate Model (50 km RegCM2 Model)

Goal: "Complete the regional RegCM2 (50 km) model run for the period, December 1978 to July 1992,
for the Western United States.”

Progress Summary. Currently we have processed over 2000 days of the Western U.S. 50 km run.
This covers from Dec/1979 to Middle of 1984. NCAR has run from Aug/1985 to Aug/ 1986. We have
also have over 200 days into a run that starts Aug/1/1988.

Support programs.
Changes in ECMWEF to IN file program:

Creation of a NMC IN file prdgram As NCAR did not archive ECMWEF observational analysis for
Dec/1979 and ECMWF does not keep archives of it's old analysm we had to create our IN files from
NMC data.

Changes to RegCM2 effecting the regional runs:
Change in Sub-grid Scale precipitation routine
Changes in horizontal diffusion. .

Semi Expiicif Moisture Scheme

NCAR 50 km Multi-year model run. Our NCAR collaborators originally proposed running a 10 year
50 km run that would covering the entire contential U.S. starting Apr/1981. Our original plan was to use
their 50 km run for the bulk of our needed 50 km runs. However, after running from Apr/1981 to 1984
they noticed that the Sea Surface Temperatures had been entered incorrectly. At this point they stopped
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running so they could evaluate. At first they thought the effect was unimportant and only effected the
coast. However, on closer examination they found several other problems with the runs. Precipiation in
the summer was too high. Desert regions were not being modeled well.

Breakup of runs into sectional chunks. Because of the intensive CPU and run times that RegCM2
takes to run, we have decided that it is only prudent to break up the entire run into different time
segments and run each segement on different machines. We have already started a segment starting in
1988. NCAR has run a section in 1985. Other segments that we plan to run are:

Jun/1/1986-Oct/1/1988,
Aug/1/1990-Oct/1/1991,
Aug/1/1991-Oct/1/1992, and
Aug/1/1992-latest data.

The 1990 runs will take about 73 days of running on an indigo-2, the 1988 run will take 37 days to
complete, the 1986 run 28 days, and the begining run will take 25 days to complete. Thus we expect the
50 km runs to be finished in 2 months. The ECMWF observational analysis archives beyond 1989 are in a
different format than the earlier datasets. Because, of the change in format we have been working on
changing our codes to accomidate the new format. The newer datasets also have an archive with data
stored 4X per day as well as the ussual 2 X per day. We will use the the data stored the most often.

Creation of IN to INB file program. To help speed-up the spin-up time needed for each time segment
we created a program that will use the soil moisture and temperature profile from a previous years run.
This way the BATS fields will be able to reach equilibrium sooner.

2.3.3 Local Scale Climate Model (10 km RegCM2 Model)

Goal: "Complete a local RegCM2 (10 km) model run for the period, December 1978 to July 1992, for
the Bear River Basin in Utah, Idaho, and Wyoming."

Progress Summary. We have run over 1100 days of our 10 km run. Running from Dec/5/1978
through 1981 and now into 1982.

Changes to the Local RegCM2 model system to date include:
Changes to nest program

Modify Lake Model for Great Salt Lake

Modifications to the Precipitation Auto-Conversion term
Modifications tb the Radiation routine |

Changes in horizontal diffusion

Breakup of runs into sectional chunks.

2.3.4 ZOOM, the Specific Point Weather Generator

Distributed ZOOM:
Slope / Aspect Angle inclusion in ZOOM:

12



This section has not yet been completed.

2.3.4.1 ZOOM/WEPP

Goal: "Incorporation of the WEPP soils model and the USU snow model into ZOOM."

Progress Summary. In order to integrate the functions of the hxgher level climate models with the
Water Erosion Prediction Project (WEPP) model more closely some of the functions of ZOOM/BATS are -
being incorporated into the WEPP model. This method will allow better modeling of the effects of
vegetation on microclimate. In particular, evapotranspiration from forests is strongly dependent on soil
moisture conditions, and a better representation of temperatures below the canopy is made possible by
incorporating the more detailed hydrology of the WEPP model. Growth of shrub, grass, and herb species
is strongly affected by this modification to the chmate, and their growth and survival strongly affect
erosion.

The flowcharts in Figures 2.1 - 2.3 show conceptually the layout of ZOOM/WEPP. The flowchart has
been split into three pages, corresponding to thiree sets of processes. On figure 2.1, processes are
predominantly atmospheric and are modified primarily by the topography. The second figure (figure
2.2) includes mostly surface hydrology routines that are strongly affected by site topography and
vegetation and figure 2.3 covers the interaction between soil water, rmcroclxmate, and plant growth. The
plant growth routines are based on the BGC models.

.. The initial section of ZOOM/WEPP adjusts modeled weather at the nodes to the horizontal
coordinates of the site of interest. When looking at historical weather (1978-1992), the program will
interpolate the data using the 4 corner points around the site. Because the stochastic generator does not
handle spatial correlations between nearby nodes, a weather sequence for the nearest node to the site is
used when stochastic sequences are used. Psuedo-historic weather sequences (from RegCM2 10 km
model runs) are recorded hourly at the nodes, and stochastic weather is generated on daily time steps.

The next phase adjusts the weather variables (precip, temperature, humidity, wind) for elevation and
aspect. This section will use modules already in ZOOM/BATS and incorporate the rain/snow
partitioning and drift components of the snowmelt model described in a later chapter. An interception
model will be designed to account for the effect of forest vegetation on precipitation.

The surface hydrology routines start with the snowmelt model. Either sﬁowpéck outflow or direct
rainfall is then converted to a hyetograph for the infiltration and overland flow model of WEPP

Once infiltration is detenmned the plant physiology model determiries how much water is released
through evapotranspn'atxon through each layer of the canopy. This is used to determine temperature for
lower layers in the canopy and how much soil water is withdrawn. The temperature is important in
describing plant growth in the lower layers and the probability of plant regeneration. The remainder of
the model is plant growth and erosion calculations based on the weather and hydrology calculations.

Several components of ZOOM/WEPP have been completed. The basic hydrology components of
WEPP have been coded and validated.. The snowmelt model has been incorporated into the WEPP model
and is awaiting verification. Validation of the snowmelt model is described in a chapter 3. The
adjustments for elevation and aspect are already in ZOOM/ BATS and will be incorporated into
WEPP/ZOOM.

Remaining development tasks are the plant physiology, reproduction, and growth models and a new
interception routine. Most of the plant physiology and growth routines will be based on a variant of
BGC. The reproduction model is in development. Existing interception routines (ie. BATS) are
oversimplified, and a new one will be designed for this model.

13
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2.3.4.2 ZOOM/BATS Snow and USU Snow models

Goal: "Intercomparison of the performance of the BATS soils and snow submodels with the WEPP
soil model and the USU snow model to determine if the models significantly affect the calculation of local
climate variables.” '

Progress Summary. For completion of the other tasks and to-give highest emphisis on getting the
highest quality regional and local scale model outputs we did not complete this task. We did get an older
version of the USU snowmodel and have done comparisons of the computations to the BATS model.

2.3.5 MCLIGEN Model Validation

Principal Componerit Analysis (PCA analysis),
Daily point COOP /SNOTEL comparisons of Tmin, Tmax, and Precip.
Comparisions to gridded station data.

These efforts were delayed by the available funding, and have been tranferred to the next reportmg
period.

2.3.5.1 Regional Scale Climate Model Evaluation (50 km Western U.S.)

Goal: "Evaluate the regiondl model output through comparisons with data from NOAA Coop
Stations, SNOTEL, RAWS, NWS rawinsonde data, and satellite data. (Fundmg for this task was not
received as part of the first increment of FY 94 funding.)"

2.3.5.2 Local Scale Climate Model Evaluation (10 km Bear River Basin)

Goal: "Evaluate the local model output through comparisons with data from NOAA Coop Stations,
SNOTEL, RAWS, NWS rawinsonde data, and satellite data. (Funding for this task was not received as
part of the first increment of FY 94 funding.)"

2.3.5.3 ZOOM Model Evaluat|on

Goal: "Comparison of the BATS soil and snow submodels, the WEPP soils model, and the USU snow
model, each driven by ZOOM climate data, with the-snow course, SNO'I'EL RAWS, and satellite data for
all seasons.” _

2.4 WORK PLAN FOR FY- 1995

The following tasks are formulated for the next reporting period:

C-1. Finish the regional RegCM2 (50 km) model run for the period, December 1978 to July 1992, for
the Western United States.

C-2. Finish the local RegCM2 (10 km) model run for the period, December 1978 to July 1992, for the
Bear River Basin in Utah, Idaho, and Wyoming.

17



-

C-3. Evaluate the regional and local model output through comparisons with data from NOAA Coop
Stations, SNOTEL, RAWS, and NWS rawinsonde data.

C-4. Incorporate WEPP/BATS adjustments into WEPP/ZOOM and complete the vegetation
component of WEPP/ZOOM.

C-5. Validate the WEPP/ZOOM model through compan,sons with NOAA/ Coop, SNOTEL, and
RAWS stations. .

18



'CHAPTER 3

SNOWPACK MODELING
3.1 OBJECTIVE FOR THIS REPORTING PERIOD .

The objective of the snowmelt modeling work was to develop and test a transportable energy balance
snowmelt model to provide snowmelt inputs for the calculation of erosion in WEPP. The model is to be
driven by climate generator inputs.

3.2 TASKS

Model development was essentially complete and is described in previous reports. The task for this
phase of the work was:

1.  To assist with the incorporation of the snow model into ZOOM/WEPP.

3.3 ACCOMPLISHMENTS AND PROBLEMS

The major accomplishment of this period was a thorough revision of the code to resolve some bugs,
numerical instabilities, and to improve the structure. Following this revision the code was transmitted to
the USDA Forest Service, Moscow, ID, and assistance was given in understanding and incorporation of
the code into the ZOOM/WEPPF components being developed there. The model was also tested further
against data from Upper Sheep Creek, within the Reynolds Creek experimental watershed, Boise, ID, and
against data collected in Cache Valley, near Logan, UT. These tests were reported in the following
publications which are included as Appendices 4A and 4B (Tarboton et al., 1995, Tarboton, 1994) to this
report. Based on this work, the following deficiencies and shortcomings need to be noted:

1. The parameterization of atmospheric instability based on Richardsons number was found to be
deficient because the values obtained from typical input data frequently resulted in a
Richardsons number greater in magnitude that the range for which the parameterizations were
valid. An option to turn off the effect of atmospheric instability was included in the restructured
code and until this is resolved we recommend that the instability parameterization be turned off.

2. The model has a tendency to underestimate the snow energy content early in the season prior to
melt. This was discovered from the tests against data collected in Cache Valley where we had
temperature measurements within the snowpack so we could check this aspect of the model.
The calibration of adjustable parameters within the model apparently offsets this deficiency, but
if possible it should still be corrected so that the model is as physically close to correct as
possible. Melt predictions are still relatively good.

3. The representation of vegetation through a vegetation density factor F is still relatively primitive
and has only had minimal testing against data at the CSSL forested site. We do not have other
data on snow accumulation and melt rates, together with the necessary vanables to drive the
model under canopies of varying vegetation density.

3.4 WORK PLAN FOR FY 1995
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Our objective for this period is to resolve the deficiencies noted above to the extent possible and
verify the operation of the model within WEPP/ZOOM. More specific taks have been highlighted as

follows:

C-1.

C-2.

C-3.

Test the model against additional data. Additional data that are available includes: (i) data
collected by Dennis Harr in the Pacific Northwest; (ii) data from the GLEES experimental
watershed; and (iii) Snotel data. These tests should be performed in cooperation with USFS staff
at Moscow, ID, using the model within an experimental version of WEPP. This will serve as a
verification of the incorporation of the model into WEPP and provide a standard interface for
data input and reporting of results. The utility and feasibility of these tests depend on the
availability of the input variables necessary to drive the model. For some tests (Snotel in
particular), the model will need to be driven by climate model inputs. This will serve as a check
on the climate model, as well as on snow model components.

Investigate the energy content underestimation problem. - Diagnose the model runs using the
Cache Valley data to understand why the energy content is under-represented and correct any
deficiencies discovered. Re-calibrate if necessary. :
Research the parameterization and calculation of turbulent flux transfers to see if there is a
reasonable way to account for atmospheric stability /instability while remaining within the
ranges of values for which the parameterization has been developed.

Tasks 2 and 3 are open ended and, given the funding for this component of the research, substantial
improvements cannot be guaranteed.

References
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CHAPTER 4

STOCHASTIC MODELING AND PARAMETER

REGIONALIZATION

4.1 OBJECTIVE FOR THIS REPORTING PERIbD

The objective established for the current reported period was to improve the multivariate
nonparametric generation scheme to facilitate simulation from the conditional density .formed by
conditioning on a key variable, precipitation. Also to explore other alternatives.

4.2 TASKS

The following tasks were established for the current reporting period:

Task IV-1: Impfove the multivariate nonparametric generation scheme to facilitate simulation
from conditional density formed by conditioning on the precipitation. :

Task IV-2: Explore other alternatives to multivariate generation of weather variables.

4.3 ACCOMPLISHMENTS

1.

The required improvements were made to the multivariate nonparametric generation scheme.
The improved method samples the original data with replacement while smoothing the
empirical conditional distribution function. The technique can be thought of as a smoothed
conditional Bootstrap and is equivalent to simulation from a kernel density estimate of the
multivariate conditional probability’ density function. This improves on the classical
Bootstrap technique by generating values that have not occurred exactly in the original
sample and by alleviating the reproduction of fine spurious details in the data.

Precipitation is generated from the nonparametric wet/dry spell model as described in Lall et.
al. (1995). A vector of other variables (solar radiation, maximum temperature, minimum
temperature, average dew point temperature and average wind speed) is then simulated by
conditioning on the vector of these variables an the preceding day and the precipitation
amount on the day of interest. An application of the resampling scheme with 30 years of daily
weather data at Salt Lake City, Utah, USA is provided. This method has been sent for
publication as Rajagopalan et al. (1995) and is presented in Appendix 4A.

In the course of exploring other alternatives to nonparametric multivariate generation of
weather variables, a nearest neighbor bootstrap method was developed. The motivation to
this approach comes from a desire to preserve the dependance structure of the time series
while bootstrappmg (resampling it with replacement). This method is data driven, and is
highly . parsimonious. The method follows to the work of Lall et al. (1995) where they
demonstrate this idea by applying it to resampling monthly streamflow by Lall et.al (1995).
The development of the nearest neighbor approach to simulating weather variables has been
sent for publication as Rajagopalan et al. (1995), and is presented in Appendix 4B.

21



3.

In the course of improving the nonparametric wet/dry spell model for modeling daily
precipitation, that was presented in Bowles et al. (1992), a new estimator for discrete
probability distributions was developed and has been published as Rajagopalan and Lall
(1995), besides incorporating this in the wet/dry spell model, that have been sent for
publication as Lall et al. (1995) and Rajagopalan et al. (1995). The new estimator for discrete
probability distributions is presented in Appendix 4C.

The wet/dry spell model as we know involves the breaking up of the year into seasons
determined apriori. The seasons vary from place to place, as a result the same seasonal break
of the year may not hold across all sites. Nonparametric techniques for studying the seasonal
patterns in precipitation that could provide objective guidelines to breaking the year into
meaningful seasons, were identified and were applied to precipitation data from numerious
sites, along a meridional transect in western U.S. This is presented in Rajagopalan and Lall
(1995) and also in Appendix 4D.

In the wake of significant change in seasonality of precipitation, an alternate representation
to the wet/dry spell model for daily precipitation, that obviates the need for breaking the
year into seasons was motivated. This alternate representation was developed as a
nonhomogeneous Markov model that used the discrete kernel estimator developed in
Rajagopalan and Lail (1995). The nonhomogeneous Markov model is presented in Rajagopalan
et al. (1995) and also in Appendix 4E.

4.4 WORK PLAN FOR FY 1995

References
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APPENDIX 2A

DOCUMENTATION OF THE MOUNTAIN CLIMATE GENERATOR
INPUT FILES



INTRODUCTION

Welcome to a new world -- the world of Mountain Climate Generator (MCLIGEN)!
MCLIGEN is unique in that it links any interested Forest Service researcher, agent, or personnel,
to state of the art meteorological data in way never before accomplished! It allows the Forester to
access historical, modeled psuedo-historic, or even modeled doubled CO2 for any point he
chooses within the set of files he has. Such data has always existed but never before at such high
resolution and so easily accessed by personnel within the forest service. This is the vision and the
reason for MCLIGEN now lets get into the details of the methodology of use.

ZOOM is the interface from the 10 km high resolution climate model output data to the
point and basin surface hydrologic models (WEPP (point model), BATS (point or grid model)
and/or CVHM (Basin model)). The files used for this interface are called local area (LA) files,
because they only consist of a small portion of the 10 km model run. In general they should be
approximately 60 km x 60 km, this way an entire 15 year series can be loaded onto a single 2
Gigabyte disk. Were the entire area to be loaded a 50 GigaByte disk would be needed. Also it
was felt that in general a researcher would only be working with one small area at a time and the
excess information stored for the other areas was a waste of disk storage. When a researcher
needed a new area he could load the other set of files that included the area of interest. This allows
a longer time-series to be loaded onto a single disk rather than either having to only load part of the
files at a time or flip through a stack of CD's each time ZOOM/WEPP is run. If a larger area is
actually needed the same format of files can be used just as well for a larger area as for a smaller
one, but only a much shorter time-series can be loaded at a time. The other advantages of these
files over the regular output files of the Penn State / National Center of Atmospheric Research's
(NCAR) Mesoscale Model version 4 (MM4) Regional Climate Model number 2 (RegCM?2) is: data
is limited to only that needed for our work, it's in single rather than double-precision (saving disk
storage), conversions for wind direction position etc. are already completed. Another problem
taken care of with the LA files is elimination of the lateral boundary data. The outermost data
points of the run are almost purely driven by the input Boundary Conditions to the run and are thus
not useful. Because, the LA files include only the inner portions of the data this part of the data is
already stipped out thus saving disk space and preventing Forest Service personnel from having to
remember or determine these limits. Furthermore the LA files only use data stored from the regular
RegCM2 output so new LA files can be added after a RegCM2 run is made. Thus, the researchers
at Utah State University / Space Dynamics Lab. (USU/SDL) have already performed the difficult
and obscure conversions needed to be done on the data, as well as eliminating the boundary data
that is not relevant. This way the researchers at the Forest Service can concentrate on their work
rather than being required to understand obscure conversions on the data.

The researchers at USU/SDL will need help from the Forest Service in deciding where the
boundaries for each LA file should lie. There should be a larger amount of overlapping and
redundancy to take care of as many of the possible variations that Forest Service researcher's will
need. But, as the LA files can be constructed from the regular output files of RegCM2, new LA
files can be added at any time.



NOMENCLATURE

LA files are addressed as LA##SURF??, LA#BATS??, LAMELEV??, and LA##RAD?? files.
The "##" corresponds to a 2 digit number to identify which area this file corresponds too, the "??"
corresponds to the last two digits of the year the file stores information on. LA files are designed
to store an entire year worth of data in each file. "SURF" is the surface information file, BATS is
the BATS surface information file, "ELEV" is the altitude profile information file, and "RAD" is
the radiation/ explicit moisture information file.

The files are organized so that the standard driving variables are in one file. The other files contain
different data useful in utilizing the advanced options of ZOOM. This way the disk storage is kept
to a minimum. One researcher may want/need one advanced option but not another, thus he can
load the files needed and avoid the unneeded files. Because the disk storage requirements large, it
is important to provide flexibility in the creation of ZOOM input files. By nature ZOOM needs a
long time series, but not necissarily a large area, so we created files that contain a complete year of
information for a limited area. At the same time it was realized that at a later time some more
advanced options may require certain new files thought to be unnecessary at first. For example,
the dynamic option of ZOOM using the ELEV LA file to get Lapse rate. Or using the RAD LA file
to get rainwater at higher elevations. Also as more experience is built up with ZOOM we will find
which options are the most important for making it run the most efficiently with the best results.
Following we explain the different file types, explaining if the file is a main driver file or an
advanced option file, the variables stored, the number and type of vertical layers in the file, and
how often the data is stored.

File Types:

BATS The BATS information file is the main driver of ZOOM. It contains
the standard driving information for ZOOM. Containing the driving
temperature, pressure, humidity, radiation, and rainfall data. It also
contains other surface data either to be used for initial conditions or
for model comparison for possible adjustment to the driving
variables for more advanced options of ZOOM. Surface data is
stored hourly.

ELEV This file is an advanced option file for the dynamic option of
~ ZOOM. It contains the temperature, N-S, E-W winds, and humidity
for each model sigma layer.(the model has 20 layers, but we will
most likely restrict this file to the bottom 5 to 10 layers). ELEV data
is stored every 6 hours.
SURF This file stores some of the surface information used in conjunction
with the ELEV file. It contains ground pressure, total precipitation, and convective
precipitation. SURF data is stored every 6 hours.

RAD This file is an advanced option file for ZOOM. Currently the only
data stored in the file is the fractional cloud cover. When the
RegCM2 model is run with the explicit moisture scheme (which it
will be at the 10 km resolution) the file will also store the cloud
water and rain water. It stores data for each model sigma layer (the
model has 20 layers, but we will most likely restrict this file to the
bottom 5 to 10 layers). RAD data is stored every 6 hours.



MODEL NOTES

It must be kept in mind at all times when using this data that it is modeled data not real data.
It does use a state of the art physically comprehensive model in the same class of model as used by
the National Weather Service for forecasting, but a model nonetheless. It does use boundary
conditions that are derived from observational data, and the boundary conditions are updated every
12 hours, and these boundary conditions do have the greatest impact in driving the model. But, no
matter the 10 km run, the real observational data is almost always several 100's of Km away from
your point of interest. Also the data contained within the model represents that for the surface
slope, aspect angle, height, and land-use types that the model represents. In general this is the
average of each of these over the 10 km grid square of interest. Because this average is done on a
10 km grid square basis, each of these can be significantly different than at any specific point
within the grid square. For example the height could be as much as 1000 m higher or lower than
the actual height at that point (For the extreme example of a very high and narrow peak or canyon).
The model sets the surface slope and aspect angle to zero so this could be off by up to 45 degrees.
Also the land-use type could be as wildly diverging as desert to evergreen forest or visa-versa in
the most extreme example of an elevation difference that puts a forest next to a desert area.
Remempber, that the model data more or less represents what the variables would be, as the average
of each 10 km grid square, if the topography, land-use, slope and aspect angles were those that the
model uses. ' '

This is why it is important to run ZOOM beneath the 10 km data-set to begin to account for
some of the local effects of different: elevation, slope, aspect, and land-use. Some local effects can
not be accounted for very well -- such as a canyon breeze, or fog or frost pockets. Also, as there
is not a two way interaction between the driving variables and the surface variables, some
information will indeed be lost. For example, the model may be at a high enough temperature to
melt all the snow in the 10 km grid square, but at the zoomed point, say 500 m higher, the snow
may be still quite deep. This would significantly cool the driving air temperature, but because this
two way interaction is gone the driving air temperature will heat the snow more than it should.

But in comparisons of the model with averaged observed data at 50 km resolution we
expect the following. Daily and hourly information can be significantly off, mostly due to the
model inaccurately predicting the speed, .track, and extent of storms. The model may have the
storm moving faster or slower than the storms actual rate and arrive at the right position as much as
a day or two before or after the actual storm did. The position may also be off by tens to hundreds
of Km, and the extent may be off also. All of this means that in the short term and over a small
area the model is not very accurate. But, if you average over a longer time period and a larger area
the model produces a reasonable climate. The monthly averaged temperature is likely to be within
2-5 degrees of observed with most of this difference accounted for by the ZOOM adjustments.
Precipitation, however, is much more difficult to model. Wintertime precipitation is likely to be
within 4% to 50% of actual precipitation, depending on the region. Sumimertime precipitation can
be very bad however, with a strong tendency for over prediction. If you just measure precipitation
yes or no and compare this to observations a good correspondence will be shown, but the amounts
themselves may be off, by up to 3X actual precipitation. Numerical point storm events are likely
and will need to filtered out by ZOOM. Also for this reason fudge factors may need to be built into
ZOOM to compensate for the models over prediction of summertime precipitation. Also
orographic effects within a 10 km grid square can effect the distribution of precipitation within a 10
km grid square. A simple parameterization of this effect will be accounted for in ZOOM. Radiation
will be reasonable but completely dependent on the clouds and storms predicted by the model.
Thus comparisons here can not be on amounts, but comparing cloudy days with modeled days that
are cloudy. '



Lambert Conformal Grid Projection

The model is done on a grid that is not even with latitude longitude, but even on a lambert
conformal conic grid projection. In other words, because of the curvature of the earth the grid
squares are not quite 10 Km in each direction they are distorted in the manner prescribed by a
Lambert Conformal conic projection with standard parallels at 30 degrees North latitude and 60
degrees North latitude. Because, of this distortion the model stores both the latitude and longitude
at the center of each model grid square, thus the actual distance on the globe can be calculated for
each 10 km grid square to the next or converted to a different projection. However, even though
the projection is Lambert Conformal conic, the data has been converted so that all vectors are in
standard directional coordinates (N-S, E-W).

RegCM?2 Model Physics Packages

RegCM2 encompasses seven major packages to model the physics of the atmosphere. The seven
areas are: The basic atmospheric model itself, the time integration scheme, the cumulus cloud
parameterization, the radiation model, the surface physics model (BATS), the atmospheric
planetary boundary layer (APBL) model, and the lake model.

Atmospheric Model RegCM?2 uses the standard Navier-Stokes equations of: continuity,
momentum, and Thermodynamic equations to model the basic atmosphere.
In addition to this water vapor is tracked in the model and the latent heat of
condensation is accounted for. Because, of the complexities of ice-phase
physics the latent heat of fusion of water is not tracked. Although at mid-
latitudes these processes can be important as most precipitating clouds will
likely have at least a portion below freezing. An explicit option can be
chosen that tracks cloud water, rain water, and water vapor separately. This
provides a more accurate scheme for tracking water especially at high-
resolution. :

For speed and accuracy RegCM2 uses a Arakwara-B grid. This means that
some of the data is horizontally offset by half a grid cell from the other data.
The horizontal winds (u and v) are on the dot grid and the rest of the data
are on the cross grid points. Similar to the following representation:
Figure 1. (x-y grid)

XXX X XXX

XXX XX XX

XX XXX XX
Note that as in the example there is one less row and column for the cross
grid points than for the dot grid points.

Time integration Scheme

Like most fluid dynamics models, RegCM2 becomes numerically unstable
if the time step is not sufficiently small for the size of the horizontal (and

vertical) grid steps. This is mainly due to any types of waves that propagate
through the medium (such as gravity, sound, or Rossby waves). The time



step must be small enough that the fastest of these waves can only step
forward at most one grid square in each time step.

The basic model uses a leap frog approach for advancing forward the
differential equation. This has the advantage of using centered differences
for calculating derivatives which increases the accuracy of the method. The
model calculates the derivatives at the current time-step and then uses them
to advance the previous time step values forward two time-steps. The high
energy terms are then dropped out with a Asselin filter.

Now, to speed up the computations even further we use a split-explicit time
integration scheme to allow for larger time-steps to be used. The fastest
waves are gravity waves that are quasi-linear and they only effect a small
portion of the mass of the atmosphere. So we use linear theory to correct
the solution for these fastest waves. After the normal time step we correct
the solution by adding in the correction that results when integrating the
linear solution for a time step a fourth the size of the regular time-step, and
then again at half the size of the regular time-step. In this way the regular
time-step can be about 3X larger than it would have to be otherwise. And
even though the split-explicit scheme is running at time-steps a fourth the
size of the regular time-step, because it's solution is linear it can be
calculated in a small fraction of the time for the regular time-steps.

Sub-grid scale Cumulus Cloud Parameterization Model

Radiation Model

A very large percentage of rainfall especially in the summer comes from
convective type (Cumulus) clouds which are on the scale of 1-20 km in
horizontal extent. Because, RegCM2 attempts to model with grid sizes
from 10-100 km, these Cumulus clouds must be parameterized as a sub-
grid scale process that occurs within a model grid square. RegCM?2 has two
one-dimensional Cumulus parameterization schemes: a Kuo-Anthes type
approach and a Grell scheme that has flexibility in the closure type used
(Arakwara-Shubert or Fritsch-Chappell type closure schemes). The
Cumulus cloud scheme will test each layer to see if it is convectivly unstable
(if you lift a parcel of air to the next layer and the layer is stable or rising --
the layer is convectivly unstable). If a layer is convectivly unstable it then
checks if any water vapor will condense from the rising air parcel. If not it
goes on, but if it does -- it has found the base of a Cumulus cloud. At this
point there are further checks and the cloud model parameterizes the
properties of the cloud itself as well as how it's creation will effect the large-
scale parameters. This is the point where the different closure schemes
differ.

RegCM?2 uses a one-dimensional column model to track radiation. It divides
the solar spectrum into 12 bands from 0.2 to 5 micrometers. Seven UV
bands, one visible (0.35-0.7 micrometers), and four IR bands. Outside this
range the solar spectrum is insignificant, but because of absorption and re-
emission by the atmosphere a long wave energy flux is present also. The
model includes scattering and absorption by the surface, clouds, water
vapor, Ozone, Carbon dioxide and molecular Oxygen. The model tracks
the flow of water vapor. Ozone is set by a constant profile. And the mass
mixing ratios for Carbon Dioxide and molecular Oxygen are assumed
constant. Direct and diffuse radiation is differentiated all the way down to
the surface. The Long Wave flux incident from the atmosphere is the total



flux over all wavelengths that is emitted from the atmospheric sources, but
as it represents a black-body at about 280 K it's peak is around 20
micrometers and is only significant from about 5-30 micrometers.

Surface Physics Model

Modeling the surface physics and hydrology is important in running an
atmospheric model that spans more than a week of simulation time. The
surface layer model used by RegCM?2 is the Biosphere Atmosphere Transfer
Scheme (BATS) model developed by Richard Dickenson and Ann
Henderson-Sellers. This model keeps track of the soil moisture in a 3-layer
hydrology model. It tracks the soil temperature, surface skin temperature,
temperature of the foliage and temperature of the air in the canopy. It tracks
the snow depth and areal coverage, and the vegetation growth. As well as
determining the drag the vegetation has on the atmosphere.

Planetary Boundary Layer Model

Lake Model

General:

A significant amount of the energy of the atmosphere near the surface is put
into driving small eddies on the scale of 1 cm to 10 meter. Because these
eddy's are too small to be resolved by the atmospheric model directly they
are parameterized by the stability conditions of the grid cell. These eddys
tend to dominate within the Atmospheric Planetary Boundary Layer
(APBL), which is the region of the atmosphere from the surface up to 500-
1500 meters up -- depending on stability conditions. The model
parameterization used by RegCM2 is the Holtslag APBL.

RegCM2 also has a fresh or salt water columnar lake model. Ocean
temperatures are set using the CAC monthly averaged 2.5 degree Sea
Surface Temperature produced by NMC. It uses observations from ships,
buoys, and satellite. But, to get the surface temperatures over lakes the
Hostetler Lake model is used. This lake model takes each model grid point
over the lake and models it as a column at 1 meter vertical steps.
Attenuation of radiation with depth is accounted for and mixing due to eddy
diffusion is parameterized.

Description the LA file Header

All the LA files share the same header type. The header gives the dimension of the
file arrays, the limits for this LA file, the sigma levels, the latitude, longitude,
surface height, and BATS land-use type for the center of each grid square stored in
the file. It also contains a character string description of each of the variables stored
in the particular file, a general title and specific LA file type description. And a
listing of the valid dates and times the file stores information on. Remember the
model is on a Lambert Conformal Conic grid projection so the grid points are
evenly spaced in this projection, but distorted in latitude and longitude. So there is
not an even spacing in latitude or longitude of the grid points. Because of this the
value for both latitude and longitude is given for each and every point stored in the
file.

List of variables:

TITLE(1) This is a 100 character title giving the model version and short description

of it.



TITLE(2)

IY

JX

IYO
IYF

This is a 100 character title giving a description of this file type. (Radiation
file, Surface file etc.)

This is the dimension of the entire model run grid in the "Y" "N-S”
direction. The model is on a Lambert Conformal grid projection so moving
in the Y grid direction does not directly correspond to moving in N-S,
except near the grid center.

This is the dimension of the entire model run grid in the "X" "E-W"
direction. The model is on a Lambert Conformal grid projection so moving
in the X grid direction does not directly correspond to moving in E-W,
except near the grid center.

This is the dimension of the number of sigma layers stored in the file. Itcan
be up to the number of layers stored in run. Files with just surface
information will just have KZ=1. "Because, MCLIGEN does not need the
whole atmospheric profile up to the tropopause, but maybe just the bottom
1000 m or only about 10 layers will likely be stored.

This is the starting index in the "Y™" direction for this local area file. LA files
only have data stored in the "Y" direction between Y0 and IYF.
This is the ending index in the "Y" direction for this local area file. LA files

only have data stored in the "Y™" direction between IY0 and IYF.

JX0

JXF

NTYPES
DATYPE
NCH

DIR
BEGDAY

IDATEBEG

IDATEEND

This is the starting index in the "X" direction for this local area file. LA
files only have data stored in the "X" direction between JX0 and JXF.

This is the ending index in the "X" direction for this local area file. LA files
only have data stored in the "X" direction between JX0 and JXF.

This is the number of different data-types stored in the LA file.

This is a character string description of each data type s‘toféd in the file.
This is the number of characters stored in the directory name.

This is the directory of where the file came from.

This is the beginning day for the whole run. In the YYJJJHH format,
where YY=last two digits of the year the file is storing, J1J=the julian day,
and HH = hour in Universal time (UT). (Ie. 7833500 = year 1978 julian
day 335 (or Dec/1) 00:00 hours UT).

This is the beginning day that is stored in the file. In the YYJIJHH format,
where YY=last two digits of the year the file is storing, JJJ=the julian day,
and HH = UT in hours. (Ie. 8200100 = year 1982 julian day 1 (or Jan/1)
00:00 hours UT).

This is the last day that is stored in the file. In the YYJJJHH format, where
YY=last two digits of the year the file is storing, JJJ=the julian day, and
HH = UT in hours. (Ie. 8236523 = year 1982 julian day 365 (or Dec/31)
23:00 hours UT).



DAYINC

TOPO

XLAT

XLON

XLUSE

This is the number of days that are stored in each RegCM2 output file. It
isn't really needed for LA files but is given anyway.

This is the array of elevation heights in meters for the center of each model
grid square.

This is the afray of latitudes in degrees for the center of each model cross-
point grid square.

This is the array of longitudes in degrees for the center of each model cross-
point grid square.

This is the array of BATS landuse types that are used for each model grid
square. There are 18 BATS land-use types classified as follows:

Table I

1 =Crop

2 = Short Grass

3 = Evergreen Needle forest

4 = Deciduous Needle forest -

5 = Deciduous Broad-leaf forest
6 = Evergreen Broad-leaf forest

7 =Tall grass
8 =Desert
9 =Tundra

10 = Irrigated Crop

11 = Semi-desert

12 = Glacier

13 = Swamp

14 = Lake

15 = Ocean

16 = Evergreen shrub

17 = Deciduous shrub

18 = Mixed forest (decid. and evergreen mix)

Because of the lack of soil texture and color information, the land-use type
is also used to estimate the soil texture and color class. BATS has 12 soil
texture types and 8 soil color types. Texture class 1 corresponds to sand,
class 6 is loam and class 12 is clay. Soil color class 1 is light and 8 is dark.

Table IT
Landuse type = Texture class, color [veg]

1 =Tex 6, Color 5 [Crop]

2 =Tex 6, Color 3 [Short Grass]

3 =Tex 6, Color 4 [Everg. Needle]
4 =Tex 6, Color 4 [Decid. Needle]
5 =Tex 7, Color 4 [Decid. Broad]
6 =Tex 8, Color 4 [Ever. Broad]

7 =Tex 6, Color 4 [Tall grass]

8 =Tex 3, Color 1 [Desert]

9 =Tex 6, Color 3 [Tundra]



10 =Tex 6, Color 3 [Irr. Crop]

11 =Tex 5, Color 2 [Semi-desert]
12 =Tex 12, Color 1 [Glacier]

13 =Tex 6, Color 5 [Swamp]

14 =Tex 6, Color 5 [Lake]

15 =Tex 6, Color 5 [Ocean]

16 =Tex 6, Color 4 [Ever. shrub]
17 = Tex 5, Color 3 [Decid. shrub]
18 = Tex 6, Color 4 [Mix forest]

The porosity of the soil (The fraction of the soil volume that is void and can hold
water) is associated with it's texture class the 12 classes are assigned the following
values for porosity:

Table TH

SIGMA

Texture class (type) = Porosity (unitless (volume/volume))
1 (Sand) = .33
=.36

O 00~ AW W
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&
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12 (Clay) = .66

If KZ is larger than one than the (KZ+1) full sigma levels are stored. Sigma
is a terrain following coordinate related to the pressure. Defined as:

P top is the pressure at the model top. The standard P top is 80 mb. Data is
stored on the half sigma level, layer 1 is average of full sigma height 1 and
2, layer 2 is average of full sigma height 2 and 3, etc. The 21 "standard"
full sigma levels are:

1.0, 0.995, 0.987, 0.977, 0.96, 0.945, 0.925, 0.89, 0.84, 0.79,
0.71, 0.62, 0.53, 0.44, 0.35, 0.27, 0.19, 0.12, 0.07, 0.03, 0.00

Sigma = 1.0 is the surface and sigma = 0.0 is at the model top (80 mb). So
the 20 "standard” half sigma levels where the data is, are:

0.9975, 0.991, 0.982, 0.9685, 0.9525, 0.935, 0.9075, 0.865,
0.815, 0.75, 0.665, 0.575, 0.485, 0.395, 0.31, 0.23, 0.155,
0.095, 0.05, 0.015
This corresponds to about 25 m above the surface to about 20 km above the
surface at the highest layers. To get the actual heights you need to integrate
the hydrostatic equation, which has temperature, pressure and humidity as
input. Using the standard atmosphere we can give approximate ranges for
the sigma levels as follows:



Table IV .Half step Sigma layers for 10 km run:

Sigma Pressure (mb) ~ | Height (m)
1 {0.9975 1010 15-21
2 10.991 1004 53-77
310.982 996 106 - 150
4 10.9685 983 190 - 270
5 10.9525 969 280 -410
| 6 1 0.935 953 390 - 570
7 10.9075 927 560 - 820
8 [ 0.865 887 ' 830 - 1200
9 [0.815 841 1200 - 1700
110.75 780 1600 - 2300
0
1 ]0.665 700 2200 - 3200
1
110.575 617 3000 - 4300
2
1]0.485 533 3800 - 5500
3
110.395 449 4700 - 6900
4
110.31 370 5800 - 8400
5 .
1[0.23 295 6900 - 10000
6
1 10.155 225 8200 - 12000
7
1{0.095 169 9500 - 14000
8
110.05 127 11000 - 16000
9
210.015 94 12000 - 19000
0
Description of the Output data section
General: For each time output: the time, date, and all data is stored. For each LA file there is
a header and then the output data section is repeated for each time period stored until
the end of file. Different file-types store data at different frequencies. But all store
a years worth of data in each file.
List of Variables:

XTIMEC The time in minutes since the start of the original run.

IDATEX The date in YYJIJTHH format. Where Y Y=Last two digits of the year,

JJJ=Julian day, HH=Hour (Ie. 8236506 = year 1982, julian day 365
(Dec/31) and hour (Universal time) = 06:00 UT.
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SURFDATA The surface (or elevation) data array stored from I'YO-IYF, JX0-JXF, and 1

to KZ, and data-types 1-NTYPES.
Description of the BATS LA file data-types

General: The BATS LA files correspond to the main driving variables for ZOOM, plus some
variables added for initialization or comparison.

List of Variables:

T ground

EW-Wind

This is the surface (snow or soil) skin temperature calculated using
the "Force restore” method.

Input to this calculation is the radiation balance (R), and a sub-soil
temperature calculated at a depth of: -

Where Ksoil is the thermal conductivity of the soil (and/or snow
layer) (m**2/sec) and TAU is the number of seconds in a day.
Thermal conductivity of the soil depends both on the soil type and
the soil moisture content. So this depth actually changes from
location to location and changes in time as the soil moisture content
changes. But, basically it is the depth at which diurnal variation is
damped out and only longer time-scale variance is seen (around 10
cm).

Ground temperature is included as a comparison for the model and
for initialization. :

This is the temperature of the lowest model sigma layer (usually
sigma = 0.9975 or about 25 m above the surface). So it represents
the temperature of the air averaged over an entire 10 ki grid square
between the surface and the next closest full sigma level (usually
0.995). To find the representative height of this layer you must
integrate the hydrostatic equation to get the height of the layer (See
the section on sigma for this expression).

Air temperature is a driving parameter for zoom.

This is the wind in the east direction (West is negative) for the
lowest model sigma layer. To get these values the model data had to
interpolate the values from the dot grid points (a grid with points
half-way between four neighboring cross grid points) to cross grid
points, take into account curvature of the earth from the projection
and then rotate the vectors such that the E-W component is given
rather than the model "u" component in the "X" direction of the map
projection.

The winds are a driving parameter for zoom.

11



NS-Wind

Total Soil Water

Snow

Precipitation

Conv. Precip.

Upper Soil Water

Visible SW radiation

This is the wind in the north direction (South is negative) for the
lowest model sigma layer. To get these values the model data had to
interpolate the values from the dot grid points (a grid with points
half-way between four neighboring cross grid points) to cross grid
points, take into account curvature of the earth from the projection
and then rotate the vectors such that the N-S component is given
rather than the model "v" component in the "Y" direction of the map
projection.

This is the soil water in the total soil column down to a 3 m depth.
(Note the total soil layer includes the root-zone soil layer as it's
highest portion.) To get the percent of saturation that this represents
take the soil porosity for this soil texture class (given by the land-use
type) and mulitply it by the depth of this layer (3 m).

This is added for comparison and/or initialization.

This is snow water equivalent for the precipitation that has fallen as
snow and hasn't melted as yet. BATS sets all precipitation that falls
at a temperature below 1 degree Celsius as snow and everything
above that mark as rain.

This is added for comparison and/or initialization.

This is total precipitation accumulated since the beginning of the
model run in cm. It includes both the grid scale resolvable
precipitation as well as the parameterized sub-grid scale resolvable.

This is a driving parameter for zoom.

This is convective precipitation accumulated since the beginning of
the model run in cm. It only includes the parameterized sub-grid
scale resolvable portion of the precipitation. Normally it is
generated by the Fritsch and Chappell type closure scheme from the
Grell Cumulus cloud sub-grid scale non-resolvable convective
cumulus cloud parameterization scheme.

This is a driving parameter for zoom.

This is the amount of water in the soil in mm in the upper soil layer
(10 cm depth). To get the percent of saturation that this represents
take the soil porosity for this soil texture class (given by the land-use
type) and mulitply it by the depth of this layer (10 cm).

This is added for initialization and/or comparison.

This is visible radiation in W/m**2 of the radiation reaching the
surface in the band between 0.35 and 0.7 micrometers. Including
direct and diffuse radiation.

This is a driving variable for zoom.
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SW incident This is total solar radiation in W/m**2 of the radiation reaching the
surface in the band between 0.2 and 2.0 micrometers. Including
direct and diffuse radiation.

This is a driving variable for zoom.

net SW This is net solar radiation in W/m**2 of the radiation absorbed by the
surface in the band between 0.2 and 2.0 micrometers. Including
direct and diffuse radiation.

This is added for comparison.

Humidity ground This is the mixing ratio of mass of water vapor to mass of dry air
(Kg/Kg) for the surface layer.

This is added for comparison in zoom.

Humidity air This is the mixing ratio of mass of water vapor to mass of dry air
(Kg/Kg) for the lowest model sigma layer (usually 0.9975 or about
20 m above the surface).

This is a driving variable for zoom. |

Net LW radiation This is incident longwave radiation minus the longwave radiation
released from the surface (proportional to Tg**4).

This is added for comparison in zoom.

Incident LW radiation Incident LW is the horizontal longwave radiation incident on the
surface. It is the radiation at all wavelengths that is emitted
from that atmosphere.

This is a driving variable in zoom.
Pressure ground This is the pressure at the model surface in Pascals.

This is a driving variable in zoom.

Diffuse visible rad. ~ This is the diffuse component of the visible radiation between 0.35
and 0.7 micrometers.

This is a driving variable for zoom.
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Root-zone soil water This is the amount of water in the soil column down to the root-zone

soil level in mm. The depth of this layer depends on the vegetation
class but varies between 1 to 2 meters (note the root-zone soil layer
includes the upper layer soil layer as it's upper portion).

Table V.
1 =Crop [1 m]
2 = Short Grass [1 m]
3 = Evergreen Needle [1.5 m]
4 = Deciduous Needle [1.5 m]

5 =Deciduous Broad [2 m]
6 = Evergreen Broad [1.5 m]

7 =Tall grass [1 m]

8 = Desert - [1 m]

9 =Tundra [1 m]

10 = TIrrigated Crop [1 m]

11 = Semi-desert [1 m]

12 = Glacier [1 m]

13 = Swamp [1 m] -
14 = Lake [1 m] o
15 = Ocean [1 m] o

16 = Evergreen shrub [1 m]
17 = Deciduous shrub [1 m]
18 = Mixed forest [2 m]

Note: Although a value is given for Lake and Ocean the model doesn't really use
these values. :

To get the percent of saturation that this represents take the soil porosity for this soil
texture class (given by the land-use type) and mulitply it by the depth of this layer.

This is added for initialization and/or comparison in zoom.

Description of the ELEV LA file data-types

General: This file contains the driving variables for zoom under the dynamic option.
Primarily it is used to find the slope with elevation that each of the driving variables
have. After finding the slope each variable can more accurately be adjusted for
elevation. This file is only stored every 6 hours so the slope must be considered
constant or varying only linearly during this time period.
List of Variables:
T air This is the temperature of the each respective model sigma layer (See the o

section on sigma to get the sigma levels). So it represents the temperature
of the air averaged over an entire 10 km grid square between the nearest
sigma layer. ‘

EW-Wind This is the wind in the east direction (West is negative) for the respective

model sigma layer. To get these values the model data had to interpolate the
values from the dot grid points (a grid with points half-way between four ‘-
neighboring cross grid points) to cross grid points, take into account
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NS-Wind

Humidity air

curvature of the earth from the projection and then rotate the vectors such

that the E-W component is given rather than the model "u" component in the
"X" direction of the map projection.

This is the wind in the north direction (South is negative) for the respective
model sigma layer. To get these values the model data had to interpolate the
values from the dot grid points (a grid with points half-way between four
neighboring cross grid points) to cross grid points, take into account
curvature of the earth from the projection and then rotate the vectors such
that the N-S component is given rather than the model "v" component in the
"Y" direction of the map projection.

This is the mixing ratio of mass of water vapor to mass of dry air (Kg/Kg)
for the respective model sigma layer.

Description of the SURF LA file data-types

General: This is the surface data that goes with the elevation data. It is included only to get
the values that correspond with the ELEV files. All of this information is repeated
in the BATS files but at a hourly basis rather than every 6 hours.

List of Variables:
Pressure ground This is the pressure at the model surface in centibar.
Precipitation This is total precipitation accumulated since the beginning of the

Conv. Precip.

model run in cm. It includes both the grid scale resolvable
precipitation as well as the parameterized sub-grid scale resolvable.

This is convective precipitation accumulated since the beginning of
the model run in cm. It only includes the parameterized sub-grid
scale resolvable portion of the precipitation. Normally it is
generated by the Fritsch and Chappell type closure scheme from the
Grell Cumulus cloud sub-grid scale non-resolvable convective
cumnulus cloud parameterization scheme.

Description of the RAD LA file data-types

General: The RAD files keep track of some specialized information not normally used in
Zoom, but useful for some advanced options. Cloud water and rain water is only
included for the explicit option in RegCM?2, which is the normal case for 10 km

runs.
List of Variables:

Cloud Cover

Cloud Water

This is the fractional cloud cover at each sigma layer ranging from 0.0, for
no clouds, to 1.0, for 100% coverage of the cloud over the grid cell. The
bottom 3 sigma layers are not allowed to have clouds. For the cumulus
parameterization cloud cover is assumed to be 100% for 10 km runs.

This is the mass mixing ratio of water that has condensed into cloud form.

Over a grid cell without clouds it is zero and within a cloud will be higher.
The units are Kg/Kg.
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Rain Water

This is the mass mixing ratio of water that is now falling as precipitation.
Because, a significant portion of the rain may evaporate as it falls the rain

water is useful in adjusting the precipitation with elevation. The units are
Kg/Kg.
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APPENDIX 2B

13 YEAR MESOSCALE MODELING STUDIES VIA A MULTI-PROCESSING
VERSION OF A REGIONAL CLIMATE MODEL



ABSTRACT

Utah State University (USU) and the Interdisciplinary Climate Studies (ICS) group at the National
Center of Atmospheric Research (NCAR) have teamed up. Using NCAR's RegCM?2 (Regional
Climate Model version 2) model which includes a surface physics and hydrology model (BATS --
Biosphere Atmosphere Transfer Scheme) we are producing a multi-year mesoscale climate
sequence. These are historical 13 year simulations (December 1978 to April 1992) from nested
climate models at three resolutions, T42 (the observational analysis of the European Center of
Medium Range Weather Forecasting (2.81 x 2.81 degrees), 50 km and 10 km respectively.
Without access to a super-computer we ported RegCM2 to our IBM-6000 and Indigo-2 work
stations. However, running RegCM2 at 10 km resolution over a 400 km square grid for a 13 year
sequence proved to be too CPU intensive, taking over 2 years of CPU time to process.

Therefore, a parallel version of RegCM2 was developed by us to cut the CPU time by the number
of available processors. A preliminary version has cut the time for 8 processors by four times,
allowing a 13 year run to be done in 12 months. The current version we are developing will half
the CPU time once again.

Our method of parallelization was designed for capability on both a shared-memory multiple-CPU
(such as our 8-CPU SGI Onyx System) or a distributed system of SGI Indigo's on an FDDI fiber
optic ring operating up to 10 nodes at once. However, we found the model to be too tightly
coupled to take advantage of a distributed system as it requires passing too high of an amount of
information each time-step.

Timing information for the model and an overview of the method of parallelization will be
presented by us, along with some of the hydrologic outputs of the model. We will also discuss the
impact of a longer time series of mesoscale model output.

Serial RegCM2

A 15 year simulation of MM4 at the 10 km level will take nearly 26.5 months of CPU time. For a
50 km run with the Kuo scheme it is 11 months of CPU.

Synopsis of MM4 code:

MM4 main program:

initialization

do while ( xtime < timax )
if( input time ) Input BC's

tend ------ Model Dynamics.
splitf ---- Split-explicit time integration.
Track days/date/time etc.
if( output time) Output

end do

output /closing etc.

The TEND subroutine and it's children takes over 95% of the CPU time. So_it is
most natural to work with it.




TEND Subroutine (Model Dynamics):
Initialization ‘
Decouple first 4 "j” (longitude) slices put in temporary arrays.
doj=2,jx-1
Calculate pressure,temperature,humidity and wind tendencies (time
derivatives), horizontal and vertical diffusion, pressure gradient, horizontal
and vertical advection (a gradient term multiplied by a wind term).
Calculate forecast values for next time step.
HOLTBL --- Holtslag PBL routine. (Which calls both BATS (every 360
simulation seconds) and RAD every 30 simulation minutes).
- Decouple next "j" slice.
Copy forecast values into current arrays, and current values into previous
arrays.
Juggle the temporary indices around. To allow for next "j" slice.
end do
Copy the last j slices from forecast array into current array and current array
into previous array.

bdyval ----- Boundary values.

nconvp ~---- Non-convective precipitation.
conmas ----- Mass conservation check. :
solarl ----- Compute solar zenith angle.

The diffusion and horizontal advection routines are 4th order so they need j levels + or - 2 levels
away from j level solving for. Holtslag PBL needs to have the previous j-slice calculated before
doing the current j-slice and it needs to have the drag calculated from the BATS routine before it
can calculate the PBL. Other routines just need current j level.

Parallel RegCM2

Because, the j-loop in TEND takes up most of the CPU (92% of the total computation) and as it
provides a natural place to parallelize the code, we have worked at distributing this loop over each
CPU. First machine solves j=1-5, next 6-10, etc. For initialization we must calculate the geo-
potential on the previous j-slice and the vertical wind. Also for the Holtslag PBL we must first
calculate the tendencies for temperature and water (vapor, cloud, and rain), and then run BATS to
get the drag for the j-2 j slice. Then we calculate the temperature and water tendencies for the j - 1
j-slice and calculate the PBL for the j-1 j-slice. At this point we can begin the j loop for the given
node. We save the results for these previous 2 j-slices so that we don't have to recalculate them for
the previous node. »

Because, this method does not parallelize the entire code it will not increase the speed directly
proportional to the number of nodes but as given by Amadahl's Law:

1
+ (100 — percent)

F=

percent

#nodes



So for our case where the percent parallelized is 92% and the number of nodes is 4 we get 3.2 as
our speedup. Now in actual runs the speed-up was 2.2. We believe the discrepency is due
partially to the additional time taken for parallelization, having CPU's wait for resources, and

problems with load balancing.

Table of Run Times for 15-Year Climate Run

Resolution Grid Size Machine Run-Time

(km) (months)
10 36x37x20 : Cray YMP 3.5
10 36x37x20 SGI indigo 30
10 36x37x20 , IBM 6000 25
10 36x37x20 SGI Indigo-2 25
10 36x37x20 HP-750 50
10 36x37x20 SGI Risc-8800 15
10 36x37x20 SGI Onyx-1 node 25
10 36x37x20 SGI Onyx-2 nodes 16
10 36x37x20 SGI Onyx-4 nodes 11
10 36x37x20 SGI Onyx-8 nodes 8

Fully Parallel Re 2

The fully parallel version of RegCM2 builds upon the previous version that only does the TEND j-
loop in parallel. Making the rest of the TEND subroutine parallel is not too difficult. Most of the
routines are straight forward and the only difference is restricting the j loops. However, the
SPLITF routine is more difficult. SPLITF adjusts the output of TEND ussing linear theory.



Distributed RegCM?2

Distributed RegCM2 takes the fully parallel RegCM2 and distrubutes the work on totally seperate
machines on a FDDI network. The problem here is that each node has to have information on the
other nodes before proceding. So rather than doing computations we do data transfer. Because,
of the complexities with the Holtslag PBL, the explicit moisture scheme, and the surface physics
model (BATS) 1.7 MB of data has to be transfered for a 4 node system (for a 36x37x20 grid) each
time step. As the number of nodes increases this amount increases and the timestep itself
decreases. This means that the percent of time spent transfering data increases exponentially with
the number of nodes. Thus, eventually curtailing any speedup by adding more CPU's. We show
in our example estimates for a 4 node case. A four node case spends 15% of it's time transfering
data, and a 6 node case spends 30% transfering data. This is about the practical limit unless you
can allow unlimited traffic on your network. For some of the simplier options of RegCM2 this
percentage is much smaller. So the distributed system is useful for a small number of nodes up to
4 or 5, but with access to shared memory systems the time is much better spent.

Distributed System transfer rates:

Because, the CPU times for each time step are so short it is not necessarily cost effective to transfer
the data (approx. 3.22 MB) for each time step. The theoretical transfer rate is 10 MB/sec.
However, tests show that realistically a much lower rate is expected. The results are shown below.

TRANSFER RATE TEST RESULTS

MBytes MB/sec MBytes MB/sec MBytes MB/sec
.00002 .005 8 5.03 1.8 4.68
001 2 .9 5.26 1.9 4.66
01 20 1.0 5.29 2.0 452
1 3.70 1.1 5.26 3.0 4.39
2 3.57 1.2 5.17 5.0 4.38
3 3.30 1.3 5.14 -- --
4 6.35 1.4 5.02 -- -
5 11.11 1.5 4.89 -- -
6 6.98 1.6 472 -- -
7 4.96 1.7 4.72 - -




Load Balance:

In tests with MM4 the load is fairly evenly divided among each j-slice. The CPU's that contain the
boundary data will be unbalanced by up to about 10%, as they have additional calculations for the
BC's while at the same time aren't calling BATS or CCM2 Radiation. But this is an acceptable
level, this means that CPU's will only spinning for less than a second. Changing the way j-s are
divided among the CPU's does not improve the load balance. Qutside the boundaries the load is
balanced to much less than 1%.

The biggest area of concern with the load balance is the jx that you choose for the run. You must
choose a jx so that:

(jx-3) / # nodes

is an even number. Where jx is the number of grid points in the j (longitude) direction, and #
nodes is the number of compute nodes (threads) that you want to use.

Distributed Parallel version [4 nodes] (2.7 X speedup)

Routine CPU (sec) Load Fraction Seconds Percent
(1 pass) Balance called per step
TEDILOOP 6.412/4 1.2 1 1.923 74.5%
BATS 0.725/4 1.1 /10 0.020 0.75%
RAD 5.0/4 1.1 1/50 0.028 1%
Input 0.093 1.0 1/600 0.0002 neg
Input transfer 1.1 MB 1.0 1/600 0.0004 neg
/5 MB/sec
Output 5.713 1.0 1/600 0.0095 0.5%
Out transfer 3.2MB 1.0 1/600 0.0013 neg
/AMB/sec
BATS output 0.093 1.0 1/100 0.0009 neg
BATS output 0.1 MB 1.0 1/100 0.0004 neg
transfer /3MB/sec
splitf 0.329/4 1.5 1 0.1235 4.75%
transfer 1.6MB 1.0 1 0.4 15.5%
/4MB/sec
Other TEND 0.088/4 1.5 1 0.033 1.25%
Overhead 0.046 1.0 1 0.046 1.75%
Total CPU 2.586 100.0%
Time [7.07 serial]
per loop




Conclusions

We have developed a preliminary version of parallel RegCM?2 that opens up the capability to
modeling 15 year climate sequences with a high resolution atmospheric model with doable run
times on small machines. A fully parallel version of RegCM2 is also in the works that will
decrease the run times even further. Having longer high resolution climate sequences will allow
better regional and local scale assessments of GCM's and GCM doubled CO2 runs than currently
available. We believe this is imperitative to the understanding of the impacts of global climate
change for the local decision makers trying to plan what impact a changing climate may have on
their situation. We also believe that a model such as RegCM2 that runs in parallel on small
machines is one of the most cost-effective ways of obtaining high resolution climate sequences.



APPENDIX 2C

A VIDEO DISPLAY SYSTEM FOR QUALITY CONTROL OF HYDRO-
METEOROLOGICAL MODEL DATA



The huge quantity of data generated by GCMs and regional hydro-meteorological models makes it
difficult to evaluate the detailed features of the output of these models. Often, the primary variables
of these runs are only evaluated as monthly, seasonal or annual means, while the secondary
variables are seldom evaluated. To allow us to evaluate the port of the RegCM2 model to
workstations, we developed a video display system for the data. The display system provided
color scaled images for each of the model outputs at each time step. A clock symbol shows the
passage of time as each data image is placed onto video tape. The tape can be played back to show
the temporal and spatial range of variation of each variable.

The Visual Images Data Display System (VIDDS) is controlled by a graphical control system that
allows the choice of variables, the resolution, and speed of display. It also provides a choice of the
type of data display. Data can be displayed on a terrain contour or a map overlay type background.
The angle and orientation of the terrain painted data can be changed as desired.

This poster will show a video demonstration of the display of 50 km data from RegCM?2 in the
western US from our historical comparison for the period 1979-1981. The display also
demonstrates the display on a nested 10 km resolution area in northern Utah. The model shows the
range of temperature, precipitation, soil moisture, vegetative cover, and evaporation rates for the
models domain. While the air temperatures and precipitation rates are reasonable, the display
shows that, for particular time periods, the leaf temperatures and evaporation rates of the model in
the complex terrain are not reasonable. A technical description of the VIDDS is provided.

Technical Description

VIDDS uses a Graphical User Interface (GUI) of "C" X-11 Motif code produced by Builder-X to
set up the files parameters to be plotted etc. The GUI then spawns the graphics plotting program
which uses "C" and Silicon Graphics Inc. Graphics Language code (SGI GL) to plot the surface in
3D as a triangular mesh interpolating between grid points with Lambert shading. The colors are
picked using a color look-up table defined by the user or picked using the minimum and maximum
of the data array.

Conclusion

With the recent advances in graphical workstations we can now plot a time series of visual images
of atmospheric model data in 3D and in real time. This method of viewing the model data can
allow the researcher to understand details hidden by other methods. This method also allows a
researcher to view all the data output by the model in a reasonable amount of time. This method
can bring out deficiency's and model errors not noticed by other methods. In our case it has
helped us to catch several errors in the model and better understand the dynamics of the model and
the system.
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A NESTED MOOEL CHAIN BETWEEN GCM SCALE AND RIVER FLOW:
A Testbed For Vegetation, Erosion, and Water Yield Scaling Studies”.

G.E. Bingham™, D.S. Bowles, E. Kluzek, A.S. Limaye and J.P. Riley

Utah State University
Logan, UT. USA

1. INTRODUCTION

The interpretation of GCM indicated climate
change (Mearns et al., 1990} at regional and locai levels
is complex due to subgrid scale effects that are ignored
by the larger scale modeis. This is particularly evident in
mountainous terrain, such as the western U.S., where
whole mountain ranges are smoothed over at GCM
scales. When attempting to apply GCM climatic data to
vegetation and hydrologic studies, the short term
variations in temperature and precipitation are often lost
in climatic averaging. It is these fluctuations that provide
the stresses that limit vegetative development and cause
extreme events. In this paper, we describe the
development of a modeling system and database

designed to allow us to study the accuracy of nested

regional model predictions and the scaling effects found

in the models being developed to examine these issues.

A validation data base is also being developed that
provides the basis for muiti-year model to historical data
intercomparisons in the Rocky Mountains. The climate
modeling portion of this effort is a joint project with the
interdisciplinary Climate Systems Section (ICS-CGD),
National Center for Atmospheric Research (NCAR),
Boulder CO". The system provides a physically based
robust modeling system to link global, decade scale
climate inputs to vegetation change and river basin flow
studies.

2. THE MODEL SYSTEM

An overview of the Mountain Climate -
Hydrometeorology Model System (MCHS) is shown in
Figure 1. The atmospheric portion of the system has its
foundation in two well documented models, (RegCM2
Giorgi, et, 1993) and BATS (Dickinson et al., 1986).
RegCM2 is nested to run at two resolutions, 50 and 10
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Station, Forest Service, U.S. Department of
Agriculture.

**Corresponding author address: Gail E.
Bingham, Space Dynamics Laboratory, Utah
State University, 1695 North Research Park Way,
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Figure 1. Overview of MCHS.

resolutions. Input to the current version of RegCM2 is
either the T42 (2.81°) output of NCAR's CCM2 GCM or
NCAR's archive of ECMWF data that has been formatted
to match the CCM2 output. Data inputs to the model and
the output file structure of the 50 Km and 10 Km model
runs are shown in Figures 2 and 3. Model output is
stored on an on-line mass storage device at the Space
Dynamics Laboratory at USU. Super computer time to
run nested model studies like those descrbed here is
expensive and difficult to acquire. We have modified the
NCAR provided RegCM2 model 'to run on RISC
workstations, but runtimes on even the latest versions
limit detailed studies. A fully parallel version of RegCM2
for multi-processor workstations has been completed
{Kluzek et al.,, 1994). This version reduces the run time
requirements significantly. A one year 10 Km run
(36x37x20 grid points) on an 8 processor Silicon
Graphics Onyx requires about 12 days. The outputs of
the nested RegCM2 model provide all of the radiation,
wind, temperature, precipitation and soil moisture data
required for detailed hydrometeorological and vegetation

-studies.
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The interface between the atmospheric portion

of the MCHS and the vegetation and hydrologic models
is a USU developed model (Zoom). Zoom interpolates
the RegCM2 data from the "smooth” surfaces of the 10
Km mode! 1o the topographical scale desired for the next
layer of models. Two versions of Zoom are now
available. The first option provides single location time
series data such as would be provided by a complex
weather station, Our current single station option is used
to drive a single point version of the BATS model. Some
of the basic BATS surface types have been replaced with
conditions more suitable to western mountain surface
types. A second single point model is being developed
in cooperation with the U.S. Forest Service to provide a
versicn of the WEPP soil erosion model (NSERL, 1991)
for use in complex terrain. . The second Zoom option
provides horizontally distributed output temporal data
sequences to drive HRU or grid based models.

Qur hydrologic model (CVHM - Sikka, et al
1983) is a modified version of the PRMS model,
(Leavesley, 1983). The structure of CVHM is shown in
Figure 4. CVHM operates at daily time steps using daily
minimum and maximum ternperatures, radiation and
precipitation. Model outputs are surface and ground
water flows, evaporation and transpiration, soil moisture
at two levels, and leaf and air temperatures. The model
uses a parameterized soil moisture leaf conductance
submodel to calculate transpiration as a function of sail
moisturs, radiation, humidity and tempsrature. When
used in multiple year simulations, CVHM has the ability
to annually adjust leaf area index based on cumulative
transpiration,

CVHM is an Hydrologic Response Unit (HRU)
based model, requiring the input of HRU boundaries,
This
information is developed from DEM and LandSat T™M
data. This process is time consuming and scmewhat
subjective. Optimization of this process, both in scale
and procedure, is one of our initial research thrusts,
Currently, water shed definition is accomplished using the
MIPS analysis system. Vegetation type and leaf area are
darived using the MIPS system and LandSat TM data.
The TM data is sorted into vegetation classes using an
automnated, fuzzy classification scheme developed by
Gunderson, et al., (1992). The DEM and TM.data sets
are then merged using a rule based system to provide
the HRUs that allow CVHM to be applied across the
region being studied. Runoff, both surface and
subsurface, is collected into a river basin model which
provides the routing and hydrograph calculations.

3. DATABASE DEVELOPMENT - An Exampie

Figure & shows an example application of
MCHS. We are currently applying the MCHS to the
western U.S. for the period 1979-1993. This is the period
for which ECMWF global observation data exist. Using
observed upper air data to constrain RegCM2 should |
allow the output data to be compared with recorded
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Figure 5. The structure of CVHM.

surface climate data. The 50 Km resolution regional
model domaln includes all of the western U.S. Two local
(10 Km) regions are also being modeled for this period.
The first area to be completed covers the Bear River
drainage in Wyoming, Idahc and Utah; the second will
center on northern Ildaho. Hydrologic and vegetative
response studies are being conducted on the Weber
River basin in north-central Utah. The Wsber is a sub
watershed in the Bear River drainage. Our intent is to
eventually expand the study to include the whole Bear
River basin.

To examine the fidelity of the RegCM2 model
output, a historic climate data base (which includes the
NOAA Coop, RAWS and Snotel data for the region) has
been collected and quality controlled. This data set is
currently being gridded and adjusted for terrain effects
(Jensen, 1994). Modsi and climate data
intercomparisons are planned to take two forms. Zoom
modsl outputs are being developed for the location of
each of the existing weather stations. In addition a
gridded data set based on historical observations is being
prepared to allow direct comparison with the gridded
maodel data. This two way comparison wiil allow us to
tast the assumptions in the model to focal data



adjustment procedures,

During the development, CYHM and the Weber
River System Model were tested using some simplified
but fairly standard climate change scenarios (Sikka et al.,
1994). The hydrographs for these conditions are shown
in Figure 6. Base data for the tests were scaled historical
climate data sets, The conditions include +/- 10%
changes in precipitation coupled with 4° and 6°
temperature increases. All of the test simulations show
significant decreases in flow and in the timing of the
peak. lf actually experienced, these changes would have
significa nt impact on the population and agriculture which
has developed along the Wastatch Mountains in Utah.
Before these kinds of assessments work their way into
planning documents, more robust studies using much
more defensible data inputs need to be conducted.
MCHS was designed to provide the foundation for these
types of studies.

EE LR

Flow {(cfs)
L

£

Flgure 6. Hydrographs for CVHM and Weber River
Systemn Model output under simplified climate change
scenarios.

4, CONCLUSIONS

The Mountain Climate Hydrometeorolagical
modeling System was designed to provide a testbed to
study the scaling effects and models being proposed to
scale GCM climate change data for regional and local
studies. Developing the climate model and vegetation
data sets for this testbed has been a major effort. Now
that this effort is almost complete, detailed studies of both
the models and the scaling assumptions for a wide range
of subjects can be easily studied. The current round of
watershed scale surface studies now underway at USU
cover easily historically based 14 year paeriod, December
1978 to April 1993. We hope to expand our efforts to
include studies of vegetation response, erosion and

hydrologic responses using existing single point and

hydrologic response unit based models. Modei outputs

are being compared with a combined point data set .
based on NOAA CCOOP and USDA/SCS SNOTEL

stations as well as SSM/ and GOES image data. We

anticipate that many additional cooperative studies wiil

benefit from this extensive modeling effort.
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MEASUREMENTS AND MODELING OF SNOW ENERGY BALANCE AND
SUBLIMATION FROM SNOW

David G. Tarboton
Utah Water Research Laboratory,
Utah State University,
Logan, Utah 84322-8200
Telephone: 801-797-3172; Fax: 801-797-3663; email: dtarb@cc.usu.edu
Abstract ‘

Snow melt runoff is an important factor in runoff generation for most Utah rivers and a
large contributer to Utah's water supply and periodically flooding. The melting of snow is driven
by fluxes of energy into the snow during warm periods. These consist of radiant energy from the
sun and atmosphere, sensible and latent heat transfers due to turbulent energy exchanges at the
snow surface and a relatively small ground flux from below. The turbulent energy exchanges are
also responsible for sublimation from the snow surface, particularly in arid environments, and
result in a loss of snow water equivalent available for melt. The cooling of the snowpack resulting
from sublimation also delays the formation of melt runoff. This paper describes measurements and
mathematical modeling done to quantify the sublimation from snow. Measurements were made at
the Utah State University drainage and evapotranspiration research farm. I attempted to measure
sublimation directly using weighing lysimeters. Energy balance components were measured, by
measuring incoming and reflected radiation, wind, temperature and humidity gradients.

An energy balance snowmelt model was tested against these measurements. The model
uses a lumped representation of the snowpack with two state variables, namely, water equivalent
and energy content relative to a reference state of water in the solid phase at 0°C. This energy
content is used to determine snowpack average temperature or liquid fraction. The model is driven
by inputs of air temperature, precipitation, wind speed, humidity and solar radiation. The model
uses physically based calculations of radiative, sensible, latent and advective heat exchanges. An
equilibrium parameterization of snow surface temperature accounts for differences between snow
surface temperature and average snowpack temperature without having to introduce additional state
variables. This is achieved by incorporating the snow surface thermal conductance, which with
respect to heat flux is equivalent to stomatal and aerodynamic conductances used to calculate
evapotranspiration from vegetation. Melt outflow is a function of the liquid fraction, using Darcy's
law. This allows the model to account for continued melt outflow even when the energy balance is
negative.

The purpose of the measurements presented here was to test the sublimation and turbulent
exchange parameterizations in the model. However the weighing lysimeters used to measure
sublimation suffered from temperature sensitive oscillations that mask short term sublimation
measurements. [ have therefore used the measured data to test the models capability to represent
the overall seasonal accumulation and ablation of snow.



Description of Experiment

The experiment reported here was conducted at the USU drainage and evapotranspiration
research farm in Cache Valley. Instrumentation in place is designed for the study of
evapotranspiration from agricultural lands, but for this study was utilized for the study of winter
snow cover. The instrumentation consisted of two 1 m2 weighing lysimeters and meteorological
and energy balance equipment. The weighing lysimeters are 1 x 1 x 1 m metal boxes embedded
flush with the surface and filled with soil, vegetated with grass similar to the surrounding
agricultural field. Load cells (underneath in the case of one lysimeter and at the corners for the
other) record the weight of soil, grass, soil moisture and snow over the 1 m? area. Meltwater
infiltrates into the lysimeter so does not result in a weight change. Changes in weight are due only
to addition or removal of mass from the surface, which in the case of snow can be due to
precipitation, condensation, sublimation and wind drifting. |

Meteorological and energy balance instrumentation used is listed in table 1.

2 Net Radiometers (Fritchen type Q6 and Q4) installed 1m above the snow surface.

2 Lycor pyranometers that record solar radiation. One was pointed down to estimate albedo.

1 Eppley pyranometer to record incident solar radiation. '

2 Everest Interscience model 4000 Infrared surface temperature sensors.

4 Anemometers at heights 0.6, 0.9, 1.4 and 2.4 m above the ground surface.

4 Viasala temperature and relative humidity sensors at height 0.58, 0.90, 1.44, 2.57 m above the
ground surface. ’

2 REBS Ground heat flux plates

Thermocouple ladder. This consisted of 14 copper/constantine thermocouples at the following
levels: -0.075, -0.025, 0, 0.05, 0.125, 0.2, 0.275, 0.35, 0.425, 0.5, 0.575,
0.65, 0.725, 0.8 m, from the ground surface. The first two thermocouples were
buried and the third placed on the ground. The remainder were suspended on
fishing line strung between two upright posts.

Heated (unshielded) tipping bucket rain/snow gage.

Wind direction sensor

Two campbell scientific 21X dataloggers powered by a deep cycle 12 volt battery charged by a
solar panel were used to take measurement readings every minute and record 30 minute averages
for output.

The dataloggers were downloaded during biweekly visits at which time the sensors were
also inspected and cleared of snow and grime buildup. During these visits, snow depth and water



equivalent was measured at eight locations using an Adirondack snow tube sampler. To guard
against the danger of bridging in the snow between snow over the lysimeters and surrounding
snow which would distort the weights and inferred sublimation a plastic batten and saw was used
to saw the snow between the lysimeter and surrounding. This was done from a ladder supported
between two trestles over the lysimeter 5o as not to disturb the snow on or near the lysimeter. This
procedure was only partly successful as we did notice some abrupt changes in lysimeter weight
that coincided with the sawing. We also found that the lysimeter weight measurements had a
diurnal temperature sensitivity that precluded using them for short term sublimation measurements.
They still provide an overall measurement of snow accumulation.

The USU drainage and irrigation experimental farm is located in Cache Valley near Logan,
Utah, USA (41.6° N, 111.6° W, 1350m elevation). The weather station and instrumentation are in
a small fenced enclosure at the center of a large open field. There are no obstructions to wind in
any direction for at least 500m. Cache valley is a flat bottomed enclosed valley surrounded by
mountains that reach elevations of 3000m. During winter periods of settled weather strong
temperature inversions accompanied by very cold (-20 °C) nighttime temperatures and night and
morning fog develop. Unsettled stormy periods serve to break the inversion. During the period of
this experiment the ground was snow covered from November 20, 1992 to March 22, 1993. Air
temperatures ranged from -23 °C to 16 "C and there was 190 mm of precipitation (mostly snow,
but some rain). The snow accumulated to a2 maximum depth of 0.5 m with maximum water
equivalent of 0.14 m. Table 2 gives a chronology of the events and measurements. The
instrumentation was only fully functional for the latter half of the winter, which will be the focus of
the analysis.

Table 2. Chronolosgy.
From To Day Event
11/20/92 -41 First snowfall 6 mm.

11/20/92 1/13/93  -41to 13 Several snowstorms resulting in an accumulation of 86 mm of
water equivalent and depth of 400 mm.

1/13/93 13 Supplementary equipment (thermocouple ladder and air
temperature and humidity profile) is finally functional.

1/17/93 17t0 19 Datalogger battery failure, some data lost.

1/18/93  1/25/93 18t025 Period of unsettled weather (12 mm precipitation).

1/25/93 25 Heated precipitation gage and downward pointing pyranometer
installed and functional.

1/26/93  2/8/93 261039 Inversion and fog.

2/8/93 2/25/93  39to56 Period of unsettled weather (45 mm precipitation).

2/26/93  3/9/93 57 to 68 Inversion and fog.

3/10/93  3/11/93 69to70 Rain and snow (20 mm prec1p1tanon) Highest water equivalent
accumulation of 139 mm was recorded just prior to this event
which initiated melt.

3/11/93  3/14/93 70to73 Clear warm weather. Melt continues.

3/15/93  3/16/93 741075 Lightrain (2 mm).

3/17/93  3/18/93 76to77 Heavy rain (18.5 mm) that caused considerable snowmelt.

3/19/93  3/22/93  78t0 81 Remaining snow melted rapidly.

P



Energy Balance Snowmelt Model

The energy balance model used (Chowdhury et al., 1992; Bowles et al., 1992; Bowles et
al., 1994; Tarboton et al., 1995) was developed for purposes of erosion prediction and water
balance modeling. The snowpack is characterized by two primary state variables, water
equivalent, W [m], and energy content, U, [kJ/m?]. The state variable, energy content U, is
defined relative to a reference state of water at 0°C in the ice (solid) phase. U greater than zero
means the snowpack (if any) is isothermal with some liquid content and U less then zero can be
used to calculate the snowpack average temperature, T, [°C]. Energy content is defined as the
energy content of the snowpack plus a top layer of soil with depth De [m]. This provides a simple
buffering against numerical instabilities when the snowpack is shallow, as well as simple
approximations of frozen ground and melting of snow falling on warm ground. We discuss below
the choice of Dg and the role it plays in the model.

The model is designed to be driven by inputs of air temperature, T, [°C]; wind speed, V
[m/s]; relative humidity, RH; precipitation, P [m/hr]; incoming solar Qg and longwave Qi
radiation [kJ/m?hr]; and ground heat flux Qg [kJ/m?%/hr] (taken as O when not known) at each time
step. When incoming solar radiation is not available it is estimated as extra terrestrial radiation
(from sun angle) times an atmospheric transmission factor, Tr, estimated from the daily
temperature range using the procedure given by Bristow and Campbell (1934). When incoming
longwave radiation is not available it is estimated based on air temperature, the Stefan-Boltzman
equation and a parameterization of air emissivity due to Satterlund (1979) adjusted for cloudiness
using Tt. '

Given the state variables U and W, their evolution in time is determined by solving energy
and mass balance equations.

au _ . . 1
dt “an+Qli+Qp+Qg Qxe+Qn+Qﬁ Qu D
dW _

“a “Pr“"Ps'Mr -E 2)

In the energy balance equation terms are (all in kJ/m%/hr): Q_, net shortwave radiation; Qy,
incoming longwave radiation; Qp, advected heat from precipitation; Qg, ground heat flux; Q,
outgoing longwave radiation; Qy, semsible heat flux; Q,, latent heat flux due to
sublimation/condensation; Q_, advected heat removed by meltwater. In the mass balance equation
(all in m/hr of water equivalent) terms are: P, rainfall rate; Pg snowfall rate; M, meltwater

outflow from the snowpack; E, sublimation from the snowpack. Many of these fluxes depend
functionally on the state and input driving variables. We elaborate on the parameterization of these
functional dependencies below. Equations (1) and (2) form a coupled set of first order, nonlinear

4



ordinary differential equations. They can be summarized in vector notation as:

d
%_ = E(X, driving variables)

3)
where X = (U, W) is a state vector describing the snowpack. With X specified initially, this is an
initial value problem. A large variety of numerical techniques are available for solution of initial
value problems of this form. Here we have adopted a Euler predictor-corrector approach (Gerald,
1978).

X =X + At E(X, driving variables

E(X,, driving variables) + E(X., driving variables)
2 )

X =X,i+At

i+l

where At is the time step, X; refers to the state at time t; and X | refers to the state at time

ti+1=ti+At. This is a second order finite difference approximation, with global error proportional
to At? (Gerald, 1978, p257).

Parameterization

Depth averaged temperature - T: The snow and interacting soil layer average
temperatures are obtained from the energy content and water equivalent, relative to 0°C ice phase.

IfU<0 T=U/(py WC+p g D, Cg) All solid phase (6)
fO0<U<p, Wh; T=0°C. Solid and liquid mixture  (7)
U-p, W hf .
fU>p,Wh T= All liquid &
P V¥ B¢ pg D, Cp+p, WC,

In the above the heat required to melt all the snow water equivalent is p,, W h¢ [kJ] where h, is the
heat of fusion [333.5 kJ kg'l] and U in relation to this determines the solid-liquid phase mixtures.
The heat capacity of the snow is p,, W C_ [KJ/°C] where p_, is the density of water [1000 kg m3]
and C, the specific heat of ice [2.09 kJ kg‘1 "C-1]. The heat capacity of the soil layer is p ¢ De Cg
[kJ/*C] where P, is the soil density [=1700 kg m'3] and Cg the specific heat of soil [=2.1 kJ kg'1
"C"1]. These together determine T when U < 0. In practice, unless we allow ponded water
(which we don’t) W will always be 0 in (8). The heat capacity of liquid water, p, WC,, where
C,, is the specific heat of water [4.18 kJ kg‘l ’C‘l], is however retained in (8) for numerical



consistency during time steps when the snowpack completely melts.
Heat flow in snow and soil is governed by Laplace’s equation. The depth of penetration of
changes in surface temperature can be evaluated from the expression (Rosenberg, 1974):

1

2
oo -+ (&)

| 0

where R, is the range of temperature oscillation at the surface, R, the range of temperature
oscillation at depth z, P the period of oscillation, and « the thermal conductivity. For soil o is
typically in the range 0.004 to 0.006 cm?s. Figure 1 shows R/R, versus z for ¢t = 0.005 cm?/s
for various periods. This shows that for oscillations less than one week the effect at 40 c¢m is
damped to less than 30% and even for monthly oscillations is still damped 50% at 40 cm depth.
This suggests using D, = 40 cm in our model. Rosenberg (1974) also suggests this as an effective
depth. The state variable U represents energy content above this level. The ground heat flux
represents heat transport at this depth and is therefore a long term average. Diurnal oscillating
ground heat fluxes above this depth are absorbed into U, the energy stored in the snow and soil
above depth D,.

Depth z (em)

Figure 1. Depth of penetration of temperature fluctuations into soil with ¢ = 0.005 cm?/s.

Net Shortwave Radiation, Q,,: This is calculated as

Qgp = Qi (1-A) (10)
where Albedo, A, is calculated based on the age of the snow surface using a parameterization

described by Dickinson et al. (1993). For shallow snowpacks (depth less than 0.1 m) the albedo
is interpolated between the bare ground value (0.25) and snow value.



Outgoing Longwave Radiation, Q,.: Snow is essentially a black body, with
emissivity € = 0.99. Outgoing radiation is

4
=£0 (T:bs) an

where G is the Stefan Boltzmann constant [2.07 x 107 kI m2 bl K'4] and the superscript "abs"
. abs . ..
in TS indicates that this is absolute temperature [K].

" Snow fall accumulation and heat with precipitation: Measured precipitation rate,

P, is partitioned into rain, P, and snow, Pg, (both in terms of water equivalent depth) using the
following rule based on air temperature, Ty, (U.S. Army Corps of Engineers, 1956)

P = P Ty 2 T, =309C

Pr= P(Ty -Tp)/(T¢ - Tp) Tp<Ta<Ty (12)
Pr=0 Ta< Tp=-19C

Pg=P-P;

where T; is a threshold air temperature above which all precipitation is rain and T}, a threshold air
temperature below which all precipitation is snow.

The temperature of rain is taken as the greater of the air temperature and freezing point and
the temperature of snow the lesser of air temperature and freezing point. The advected heat is the
energy required to convert this precipitation to the reference state (0°C ice phase).

Q, =P, Cp,, min(T,,0°C) +P, [hf p,, +C,, p,, max(T,,0 'C)] (13)

Turbulent fluxes, Qp, Qe, E: Sensible and latent heat fluxes between the snow
surface and air above are modeled using the concept of flux proportional to temperature and vapor
pressure gradients with constants of proportionality, the so called turbulent transfer coefficients or
diffusivity a function of windspeed and surface roughness. Considering a unit volume of air, the
heat content is p, Cp T, and the vapor content p, q, where pj is air density (determined from
atmospheric pressure and temperature), Cp air specific heat capacity [1.005 kJ kg‘1 oc-17, and q
specific humidity [kg water vapor per kg air]. Heat transport towards the surface, Qp [kJ/m2/hr]
is given by:

Q

h = nPa Cp (Ta'Ts)

(14)

where K}, is heat conductance [m/hr] and Ty is the snow surface temperature. Vapor transport



away from the surface (sublimation), M, [kg/hr] is:

Me = Kepalgs-9) ; (15)

where g is the surface specific humidity and K, the vapor conductance [m/hr].

By comparison with the usual expressions for turbulent transfer in a logarithmic boundary
layer profile (Male and Gray, 1981; Anderson, 1976; Brutsaert, 1982; Calder, 1990) for neutral
condition, one obtains the following expression:

2
Ky =ke=—EY __g

[1n(z)] 6

where V is wind speed [m/hr] at height z [m]; zg is roughness height at which the logarithmic
boundary layer profile predicts zero velocity [m]; and k is von Karman’s constant [0.4]. The
subscript n denotes that these are conductances in neutral conditions. Recognizing that the latent
heat flux towards the snow is: |

Qe = -hy Mg ‘ ‘ | (17)

and using the relationship between specific humidity and vapor pressure and the ideal gas law one
obtains: '

: h, 0.622
Qe = Ke T abs (ea - e:s(Ts))
RiTa (18)
where eg is the vapor pressure at the snow surface snow, assumed saturated at T, and calculated
using a polynomial approximation (Lowe, 1977); e, is air vapor pressure, Ry is the dry gas
constant [287 J kg-1 K-1] and hy the latent heat of sublimation [2834 kJ/kg]. The water equivalent
depth of sublimation is:

E =- Qe

Py I, (19)

When there is a temperature gradient near the surface, buoyancy effects may enhance or dampen
the turbulent transfers. This can be quantified in terms of the Richardson number or Monin-
Obukhov length. We had hoped that the lysimeter measurements made here would have provided



data to allow us to determine the effect of stability on snow sublimation. However since that did
not work out the results presented here use neutral buoyancy.

Snow Surface Temperature, T: Since snow is a relatively good insulator, T is in
general different from T. This is accounted for using an equilibrium approach that balances energy
fluxes at the snow surface. Heat conduction into the snow is calculated using the temperature
gradient and thermal diffusivity of snow, approximated by:

Q=xpsCs (Ts-TYZe =Kgps Cs (T5 - T) Q0

where X is snow thermal diffusivity [m2 hr‘l] and Zc, [m] an effective depth over which this

thermal gradient acts. The ratio W/Z, is denoted Ky and termed snow surface conductance
analogous to the heat and vapor conductances. A value of Kg is obtained by assuming a depth, Z,
equal to the depth of penetration of a diurnal temperature fluctuation calculated from equation (9)
(Rosenberg, 1974). Z, is chosen so that R/R, is small. In fact K is used as a tuning parameter,
with this calculation used to define a reasonable range. Then assuming equilibrium at the surface,
the surface energy balance gives.

Q=Qgy + Qi+ Q(TeH+ Qe(Ts) +Qp - Que(Ty) 1)

where the dependence of Qp, Qe, and Qje on Ty is through equations (14), (18) and (11).

Analogous to the derivation of the Penman equation for evaporation the functions of T in
this energy balance equation are linearized about a reference temperature, T* and the equation is
solved for Ts:

4
abs abs abs b
_abs_ Quu+Q+Q,+KT, p,C,-0.622Kh, pa(es(T*)-ea-T* A)/Pa+3sso’r* +p C.T K,

s 3
b
pC K+ Kp,C,+062AKh, p /P, +4e oT*

(22)
where A = deg/dT. This equation is used in an iterative procedure with an initial estimate T* = T,,
in each iteration replacing T* by the latest Tg. The procedure converges to a final T, which if less
than freezing is used to calculate surface energy fluxes. If the final T is greater than freezing it
means that the energy input to the snow surface cannot be balanced by thermal conduction into the
snow. Surface melt will occur and the infiltration of meltwater will account for the energy
difference and T is then set to 0°C.



Meltwater Outflux, M_ and Q_,: The energy content state variable U determines the
liquid content of the snowpack. This, together with Darcy’s law for flow through porous media,
is used to determine the outflow rate.

M, =K_ §*

sat (23)
where Kga; is the snow saturated hydraulic conductivity [=160 m hr-l] and S* is the relative
saturation in excess of water retained by capillary forces. This expression is based on Male and
Gray (1981 p400 eqn 9.45). S* is given by:

SH = liquid water volume - capillary retention _ ‘A Lf LV Pw Pw L
~  pore volume - capillary retention ~ ~ | 1- Lf c P P, C }(24)

where Lf=U/(pyhfW) denotes the mass fraction of total snowpack (liquid and ice) that is liquid,
L [0.05] the capillary retention as a fraction of the solid matrix water equivalent, and p; the
density of ice [917 kg m-3].

This melt outflow is assumed to be at 0°C so the heat advected with it, relative to the solid
reference state is: '

Qp =Py 0 M, @5)
Model parameters

Apart from known physical constants and readily estimable quantities the model has
adjustable parameters listed in Table 3. The values used were taken from previous work with the

model calibrated against data collected at the Central Sierra Snow Laboratory. These results
therefore present an independent check of the model in a different setting.

Table 3. Adjustable parameter values

Parameter Notation Value
Surface aerodynamic roughness Zg 0.002 m
Surface conductance Ks 0.015 m/hr
Snow density Ps 450 kg m-3
Saturated hydraulic conductivity Ksat 160 m/hr
Capillary retention fraction Le 0.05
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Results and Discussion

Figure 2 gives the measured lysimeter weights, measured snow water equivalent and
accumulated precipitation. The measured snow water equivalent values shown are the average
from the 8 snow core measurements made each visit. The individual water equivalent
measurements usually varied within a range of 10 to 20% from this average. This shows general
agreement between weight accumulation on the lysimeters, snow accumulation and precipitation.
Figure 3 compares model and measured snow water equivalent for the model run from day 26 to
the end of melt. Two model runs are shown, one with the model driven by measured net radiation
and the other with the model driven by incoming solar radiation. The first run bypasses the albedo
and outgoing longwave radiation calculations so serves only to test the models sensible and latent
heat flux components. The second run is a more realistic check on overall model performance.
For both runs the model was initialized with the measured day 26 water equivalent of 0.104 m and
energy content based on the average temperature of thermocouples in the snow and soil. This
energy content was, -1136 kJ/m?. These results show that the model does reasonably well at
representing snow accumulation and melt. The second model run, with solar radiation as the
primary energy input, was used for the remainder of the comparisons in this paper.

Figure 4. shows modeled and measured snow (and soil) energy content. The measured
energy content was estimated from the measured water equivalent (linearly interpolated between
measurements) and snow and soil temperatures averaged from the thermocouple ladder
measurements. There is obviously a large discrepancy between modeled and measured energy
content early on, and given this it is surprising how well the model does at representing other
aspects of the snow accumulation and melt processes. The lowest energy content on day 39 would
predict an average snow and soil temperature of -14 *C. This is well below the observed snow
temperatures shown on figure 5. These discrepancies indicate that the model loses too much
energy during cold periods, suggesting that the snow surface conductance may be too large. It
also indicates that temperature fluctuations do not penetrate to the full interacting soil layer depth,
De [0.4 m] suggesting that perhaps D, should be reduced. After day 70 (March 20) the model
energy content is above zero due to the liquid water content of the snow. This is the melt period.
The measured energy, estimated from thermocouple measurements of snow and soil temperatures,
does not account for liquid water in the snow.

Figures 6a-f present detailed results for the period from January 26 to February 7 (day 26
to 38) during which there was a strong temperature inversion and no measurable precipitation,
although there was condensation and accumulation of frozen fog. During this period the snow
depth was 0.4 m. The sensor heights are given with respect to the ground so the lowest vapor
pressure and temperature sensors were only 0.2 m above the snow surface. The lysimeters (only
lysimeter 2 is shown in fig 6a, but lysimeter 1 was similar) recorded a diurnal oscillation in weight
that is I believe an effect of the cold temperatures on the electronics or load cell system. The
oscillations which correlate well with air temperature amount to 2 mm of water equivalent. Based
on net radiation measurements the net radiation could only supply energy to sublimate a maximum
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of 0.6 mm/day (if all energy goes to sublimation) in this period. The oscillations therefore mask
any sublimation signal and preclude the use of these lysimeter measurements for the study of short
term sublimation. Figure 6b shows the model water equivalent on an expanded scale where you
can see that it does go through a very small diurnal oscillation (up to 0.1 mm/day) with nighttime
condensation and daytime sublimation. This oscillation is out of phase with the vapor pressure
measurements which increase during the day then drop at night. This suggests a recycling process
where the snow surface layer is sublimated during the day then redeposited during nighttime
cooling. There is a net accumulation from day 32 to day 33 when the vapor pressures (figure 6d)
are high. Then on day 34 there is a period of relatively strong wind (figure 6¢) and low vapor
pressure (figure 6d) that results in a relatively large modeled sublimation and drop in water
equivalent (figure 6b). Gradients in vapor pressure (the difference between the lines on figure 6d)
coincide with modeled condensation and sublimation ﬁeriods (figure 6b). Figure 6f compares
model and measured infrared snow surface temperatures. This indicates that the equilibrium
procedure for calculation of snow surface temperature works reasonably well. -

Detailed results for the melt period (March 19, day 69 to March 23, day 82) are shown in
figures 7a-h. The onset of melt was triggered by the 20 mm of precipitation, rain and snow mix on
day 69 and 70. Following the precipitation strong winds and low humidity (vapor pressure, figure
7g) induces sublimation in the model over days 71 and 72 (figure 7h). There is some suggestion
of a downward trend (implying sublimation) in the lysimeter trace on figure 7a. With this
sublimation and cooler air temperatures there is minimal melt modeled on days 71 and 72.
Freezing of the snow surface is well modeled as indicated by the model and measured snow
surface temperatures (figure 7f). Warmer weather and higher humidity from day 73 on are
characterized by positive sensible heat (higher temperatures at the upper sensor, fig 7e) and
condensation (higher vapor pressure at the higher sensor, fig 7g) which both add energy to the
snowpack, which consequently melts rapidly. The horizontal dashed line on figure 7g is 6.1 mb,
the saturation vapor pressure of water over ice at freezing point. Vapor pressures higher than this
imply a downward vapor pressure gradient which will result in condensation. Rain on day 76
makes melting even more rapid. Figure 7a indicates that over the whole season, according to the
model, net sublimation was only a small fraction (the difference between the dashed lines) of the
snow mass. This was due to the persistent inversions and high humidity associated with valley
fog.
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Conclusions

An experiment to quantify the sublimation and energy balance of snow was conducted the
winter of 1992/93 at the Utah State University drainage and evapotranspiration research farm near
Logan, Utah, USA. The experiment was not altogether successful in that large temperature
dependent oscillations in the weight recorded by the lysimeters precluded the measurement of
sublimation. However the meteorological variables measured were used to test an energy balance
snowmelt model. Comparisons against measured snow water equivalent and measured snow
surface temperatures indicate satisfactory performance of the model in representing these aspects of
the snow accumulation, energy and melt processes. Deficiencies in the models representation of
the snow energy content were found and will need to be addressed in future work. Future work
with this data set could also attempt to remove the teniperaturc dependence from the lysimeter
measurements and obtain estimates of measured sublimation. There is also the information
necessary to quantify heat flux, somewhat tenuously, as the residual from net radiation, ground
heat flux and changes in energy content of the snow. This could then be compared to temperature
gradients and modeled heat flux based on wind. It may also be possible to obtain useful
information and learn something about the turbulent transfers of sensible and latent heat fluxes
from the analysis of gradient information. This will however be difficult as the air temperature and
humidity differences measured were small and approach the resolution limit of the sensors.
Overall the improvement of our understanding of turbulent processes over snow will require more
study and more precise measurements.
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Abstract This paper describes an energy balance snowmelt model developed for the prediction 6f
rapid snowmelt rates responsible for soil erosion and water input to a distributed water balénce
model. The model uses a lumped représentation of the snowpack with two state variables, namely,
water equivalent and energy content relative to a reference state of water in the ice phase at 0°C.
This energy content is used to determine snowpack average temperature or liquid fraction. This
representation of the snowpack is used in a distributed version of the mode! with each of these state
variables modeled at each point on a rectangular grid corresponding to a digital elevation model. B
Inputs are air temperature, precipitation, wind speed, humidity and radiation at hourly time steps.
The model uses physically based calculations of radiative, sensible, latent and advective heat
exchanges. An equilibrium parameterization of snow surface temperature accounts for differences
between snow surface temperature and average snowpack temperature without having to introduce |
additional state variables. Melt outflow is a function of the liquid fraction, using Darcy's law.
This allows the model to account for continued outflow even when the energy balance is negative.
A detailed description of the model is given together with results of tests of individual components
and the complete model against data collected at the Central Sierra Snow Laboratory, California;
Reynolds Creek Experimental Watershed, Boise Idaho; and at the Utah State University drainage
research farm, Logan Utah. The testing includes comparisons against melt outflow collected in
- lysimeters and melt collectors, surface snow temperatures collected using infrared temperature

sensors and depth and water equivalent measured using snow core samplers.

INTRODUCTION

Snowmelt is a significant surface water input of importance to many aspects of hydrology

including water supply, erosion and flood control. Snowmelt is driven primarily by energy



exchanges at the snow-air interface. The model described here was developed initially to predict
the rapid melt rates responsible for erosion. It has also been used to provide the spatially
distributed surface water input in a water balance study. In developing a new snowmelt model our
goal was to incorporate ideas from the many existing models and parameterize the processes
involved in as simple, yet physically correct a manner as possible. We hoped to develop a simple,
parsimonious, physically based model that could be driven by readily available inputs and applied
anywhere with no (or minimal) calibration. The striving for simplicity led us to parameterize a
snowpack in terms of lumped (depth averaged) state variables so as to avoid having to model the
complex processes that occur within a snowpack. We have still however attempted to capture
important physical differences between bulk (depth averaged) properties and the surface properties
that are important for surface energy exchanges. Due to space limitations a detailed literature
review is not given. We have relied heavily on an understanding of snowmelt processes gleaned
from Gray and Male (1981) and the descriptions of existing models (Anderson, 1973; 1976;
Morris, 1982; Leavesley et al., 1983). In what follows we first give a detailed description of the
model. We then describe the data sets we used to test the model and show results comparing

model calculations to observations.
MODEL DESCRIPTION

The snowpack is characterized by state variables, water equivalent, W [m], energy content, U,
[kJ/m?] and the age of the snow surface which is only used for albedo calculations. These are, we
believe, sufficient to characterize the snowpack for the surface water inputs of interest. The state
variable, energy content U, is defined relative to a reference state of water at 0°C in the ice (solid)
phase. U greater than zero means the snowpack (if any) is isothermal with some liquid content and
U less then zero can be used to calculate the snowpack average temperature, T, [°C]. Energy
content is defined as the energy content of the snowpack plus a top layer of soil with depth De [m].
We discuss below the choice of De and the role it plays in the model.

The model is designed to be driven by inputs of air temperature, T, [°C]; wind speed, V
[m/s]; relative humidity, RH; precipitation, P [m/hr]; incoming solar Qg; and longwave Q3
radiation [kJ/m?%hr]; and ground heat flux Qg [kJ/m?%/hr] (taken as 0 when not known) at each time
step. Time steps of 0.5, 1 and 6 hours have been used in data comparisons here. When incoming

solar radiation is not available it is estimated as an extra terrestrial radiation (from sun angle and
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solar constant) times an atmospheric transmission factor, Tr, estimated from the daily temperature
range using the procedure given by Bristow and Campbell (1984). When incoming longwave
radiation is not available it is estimated based on air temperature, the Stefan-Boltzman equation and
a parameterization of air emissivity due to Satterlund (1979), adjusted for cloudiness using Tr.
Given the state variables U and W, their evolution in time is determined by solving energy

and mass balance equations.

dUu _

Sl =Qu+Q+Q+Q,-Q +Q +Q,-Q ()
dw

e =Pr+PS-Mr-E : Q)

In the energy balance equation terms are (all in kJ/m?/hr): Q_, net shortwaw)e radiation; Qy;,

s’
incoming longwave radiation; Qp, advected heat from precipitation; Qg, ground heat flux; Qe,
outgoing longwave radiation; Qy, sensible heat flux; Q,, latent heat flux due to
sublimation/condensation; Qm, advected heat removed by meltwater. In the mass balance equation
(all in m/hr of water equivalent) terms are: Pr, rainfall rate; Pg snowfall rate; M, meltwater
outflow from the snowpack; E, sublimation from the snowpack. Many of these fluxes depend
functionally on the state and input driving variables. We elaborate on the parameterization of these
functional dependencies below. Equations (1) and (2) form a coupled set of first order, nonlinear
ordinary differential equations. They can be summarized in vector notation as: '
dX

—— = F(X, driving variables)

dt €)]

where X = (U, W) is a state vector describing the snowpack. With X specified initially, this is an
initial value problem. A large variety of numerical techniques are available for solution of initial
value problems of this form. Here we have adopted a Euler predictor-corrector approach (Gerald,
1978).

X= X+ AtE(X,, driving variables) @

E(&l , driving variables) + F(X, driving variables)
2 )]

X =54
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where At is the time step, X; refers to the state at time t; and X, 1 refers to the state at time
4+1=ti+At. This is a second order finite difference approximation, with global error proportional
to At? (Gerald, 1978, p257). Numerical instabilities sometimes occur under melting conditions
when the snowpack is shallow due to the nonlinear nature of the melt outflow parameterization.
To deal with this we compare X; 1 to X' and if they differ by more than a specified tolerance
(0.025 m for W and 2000 kJ/m? for U) iterate up to four times setting X' to X; +1 then
recalculating X, | at each iteration. If convergence is still not achieved we take the solution that
would keep the liquid fraction of the snow constant. Following I describe how each of the

processes involved in equations (1) and (2) are parameterized.
Depth averaged temperature - T

The snow and interacting soil layer average temperatures are obtained from the energy content and

water equivalent, relative to 0°C ice phase.

IfU <0 T=Ul(py, W Cs+py D Cg) All solid phase 6

f0<U<p,Wh, T=0C. Solid and liquid mixture (7)

__ U-p,Wh
pgDng~I~;:>WWCW

FU>p,Wh, T All liquid ®

In the above the heat required to melt all the snow water equivalent is p,, W h, [kJ] where b is the
heat of fusion [333.5 kJ kg’l] and U in relation to this determines the solid-liquid phase mixtures.
The heat capacity of the snow is p, W C_ [kJ/°C] where p, is the density of water [1000 kg m™3]
and C, the specific heat of ice [2.09 kJ kg’l *C-1]. The heat capacity of the soil layer is p ¢ De Cg
[kJ/°C] where P, is the soil density and Cy the specific heat of soil. These together determine the T
when U < 0. The heat capacity of liquid water, p, W C_, where C_, is the specific heat of water
[4.18 kJ kg‘l *C-13, is included in (8) for numerical consistency during time steps when the
snowpack completely melts. |

The parameter D,, is intended to quantify the depth of soil that interacts thermally with the
snowpack. Heat flow in snow and soil is governed by Laplace’s equation. The depth of
penetration of changes in surface temperature can be evaluated from the expression (Rosenberg,
1974):
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where R, is the range of temperature oscillation at the surface, R, the range of temperature
oscillation at depth z, P the period of oscillation, and o the thermal conductivity. For soil o is
typically in the range 0.004 to 0.006 cm?/s. Fig. 1 shows R /R versus z for & = 0.005 cm¥s for
various periods. This shows that for oscillations less than one week the effect at 40 cm is damped
to less than 30% and even for monthly oscillations isistill damped 50% at 40 cm depth. This
suggests using D, = 40 cm in our model since the time scale of interest is the seasonal
accumulation then melting of snow. The state variable U represents energy content above this
level. The ground heat flux represents heat transport at this depth and is therefore a long term
average. Oscillating, high frequency, ground heat fluxes above this depth are absorbed into U, the
energy stored in the snow and soil above depth D,. This procedure provides a simple

approximation of the effects of frozen ground, or snow falling on warm ground.
Radiation
Net shortwave radiation is calculated as
Qgp = Qg (1-4) (10)

where Albedo, A, is calculated based on the age of the snow surface using a parameterization due
to Dickinson et al. (1993). The age of the snow surface is retained as a state variable, and is
updated each time step, dependent on snow surface temperature and snowfall. When the
snowpack is shallow (depth z < h = 0.1 m) the albedo is taken as r Abg + (1-r) A where

r = (1-z/h)e-Z2h, This interpolates between the snow albedo, A, and bare ground albedo, Apg,
with the exponential term approximating the exponential extinction of radiation penetration of
Snow.

Outgoing longwave radiation is
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where g is emissivity, ¢ the Stefan Boltzmann constant [2.07 x 107 Ky m™2 hrl K”4] and the

. . bs, .. -
superscript "abs" in T: indicates that this is absolute temperature [K].
Snow fall accumulation and heat with precipitation
Measured precipitation rate, P, is partitioned into rain, P, and snow, P, (both in terms of water

equivalent depth) using the following rule based on air temperature, Ty, (U.S. Army Corps of
Engineers, 1956) |

Pr=P Ta2 Tr=30C

Pr= P(Ta -Tp)/(T - Tt) Tp<Ta<Tr (12)
Pr=0 Ta< Tp=-10C

Ps=(P-P)F

where Ty is a threshold air temperature above which all precipitation is rain and T}, a threshold air
temperature below which all precipitation is snow. The accumulation of snow is sometimes
subject to considerable wind redistribution with drifts forming on lee slopes. We account for this
in the model through a snow drift factor, F, dependent on location. Ideally F needs to be related to
topography. In the application to Reynolds Creek, F was estimated by calibrating the snow water
equivalents obtained from the snow model (with F = 1) at each cell, Wp,, against the observed
values, W,. The discrepancy between observations and predictions over an interval between
measurements is attributed to drifting and suggests F = 1 + (W - W, )/Pg where Py is the gage
snowfall (calculated from P with F = 1) during the interval. Values of F less than one correspond
to locations of depletion or wind scour. This approach models drifting which actually occurs after
snowfall as concurrent with snowfall. The calibration of F assumes that the snowmelt model
correctly accounts for all other processes (melt, sublimation, condensation etc.) affecting the
accumulation and ablation of snow water equivalent. Further details are given in Jackson (1994).
The temperature of rain is taken as the greater of the air temperature and freezing point and
the temperature of snow the lesser of air temperature and freezing point. The advected heat is the

energy required to convert this precipitation to the reference state (0°C ice phase). -



Qp = Ps CS Py min(’[‘a, 0°C)+ Pr [hf Py + Cw Py max(Ta, 0 ‘C)] (13)

Turbulent fluxes, Qp, Qe, E

Sensible and latent heat fluxes between the snow surface and air above are modeled using the
concept of flux proportional to temperature and vapor pressure gradients with constants of
proportionality, the so called turbulent transfer coefficients or diffusivity a function of windspeed
and surface roughness. Considering a unit volume of air, the heat content is py Cp T, and the
vapor content p, q, where p, is air density (determined from atmospheric pressure and °
temperature), Cp air specific heat capacity [1.005 kJ kg-1 0C-1}, and q specific humidity (kg
water vapor per kg air]. Heat transport towards the surface, Qp [kJ/m2/hr] is given by:

hpa p(T T) (14)

where Kj, is heat conductance [m/hr] and Ty is the snow surface temperature. Vapor transport
away from the surface (sublimation), Mg [kg/hr] is:

Me = Kepa(9s-9 BGE))

where qg is the surface specific humidity and K the vapor conductance [m/hr].
By comparison with the usual expressions for turbulent transfer in a logarithmic boundary
layer profile (Male and Gray, 1981; Anderson, 1976; Brutsaert, 1982) for neutral condition, one

obtains the following expression:

2
kV

= Ke = 2=K
[1n(zfzo):|

(16)

where V is wind speed [m/hr] at height z [m]; zg is roughness height at which the logarithmic
boundary layer profile predicts zero velocity [m]; and k is von Karman’s constant [0.4].

Recognizing that the latent heat flux towards the snow is:

7



Qe = -hy Me an

and using the relationship between specific humidity and vapor pressure and the ideal gas law, one
obtains:

h, 0.622

Qe = Ke R Tabs (ea-es(Ts))
¢ @ | (18)

where e is the vapor pressure at the snow surface snow, assumed saturated at T, and calculated
using a polynomial approximation (Lowe, 1977); e, is air vapor pressure, Rq is the dry gas
constant [287 J kg1 K-1] and hy the 1atent< heat of sublimation [2834 kJ/kg]. The water equivalent
depth of sublimation is: '

Qe ,

E=-
Py By | (19)

When there is a temperature gradient near the surface, buoyancy effects may enhance or dampen
the turbulent transfers. This can be quantified in terms of the Richardson number or Monin-
Obukhov length, Adjustments to the neutral transfer coefficients to account for these effects exist
and were tried based on the temperature difference between the air and snow surface. However we
found that it was quite common that large temperature differences and low wind speeds resulted in
unreasonable correction factors, beyond the range for which they had been developed, so for the

purposes of the results presented here we have used neutral transfer coefficients.
Snow Surface Temperature, T,

Since snow is a relatively good insulator, T is in general different from T. This is accounted for
using an equilibrium approach that balances energy fluxes at the snow surface. Heat conduction
into the snow is calculated using the temperature gradient and thermal diffusivity of snow,

approximated by:



’Q=‘<Pscs('rs*nfze=KsPsCs(Ts‘T) (20)

where ¥ is snow thermal diffusivity [m2 hr-1] and Zo [m] an effective depth over which this
thermal gradient acts. The ratio K/Zg is denoted Kg and termed snow surface conductance
analogous to the heat and vapor conductances. A value of Kj is obtained by assuming a depth, Z,
equal to the depth of penetration of a diurnal temperature fluctuation calculated from equation (9)
(Rosenberg, 1974). Z, should be chosen so that R /R, is small. Here Kg is used as a tunihg
parameter, with this calculation used to define a reasonable range. Then assuming equilibrium at

the surface, the surface energy balance gives.

Q=Qqp + Qi+ QT+ Qe(Ts) + Qp - Qe(Ty) : @1)

where the dependence of Qp, Qe, and Qje on Ty is through equations (14), (18) and (11).

Analogous to the derivation of the Penman equation for evaporation the functions of T in
this energy balance equation are linearized about a reference temperature, T*, and the equation is
solv_c-:d for Ts:

4
abs abs abs b
Tabs_ an—i-Qli-i-Qp-i-KTa p an-—O.622Khv p a( es(T *)-e a—T* A)/Pa-i-?;aso’l' * 4p sCsT 2 SKs
s - 3
abs
pC K+Kp, Cp +0.622AKh p /P, +4e cT*

22)
where A = deg/dT. This equation is used in an iterative procedure with an initial estimate T* =T,
in each iteration replacing T* by the latest Tg. The procedure converges to a final T, which if less
than freezing is used to calculate surface energy fluxes. If the final T, is greater than freezing it
means that the energy input to the snow surface cannot be balanced by thermal conduction into the
snow. Surface melt will occur and the infiltration of meltwater will account for the energy

difference and T, is then set to 0°C.
Meltwater Outflux, M, and Q

The energy content state variable U determines the liquid content of the snowpack. This, together

9



with Darcy’s law for flow through porous media, is used to determine the outflow rate.

M =K_ ¥

sat (23)
where Kgg; is the snow saturated hydraulic conductivity and S* is the relative saturation in excess
of water retained by capillary forces. This expression is based on Male and Gray (1981 p400 eqn
9.45). S*is given by:

_ liquid water volume - capillary retention _ { Lf L Pw Pw L
T pore volume - capillary retention 1-L, T f\p, TP e 24)

1

S*

where Lf=U/(phfW) denotes the mass fraction of total snowpack (liquid and ice) that is liquid,
L [0.05] the capillary retention as a fraction of the solid matrix water equivalent, and pj the
density of ice [917 kg m-3]. This melt outflow is assumed to be at 0°C so the heat advected with
it, relative to the solid reference state is:

Qp =Py b M, (25)
Forest Cover

The presence of vegetation, especially forests, significantly influences energy exchanges at the
snow surface. A forest canopy reduces windspeed, thus reducing sensible and latent heat
transfers. It also ﬁffects the radiation exchanges. The penetration of radiation through vegetation
has been widely studied (Sellers et al., 1986; Verstraete, 1987a; 1987b; Verstraete et al., 1990;
Dickinson et al., 1993), and models developed that discretize the canopy into layers treating the
energy balance of each layer separately (Bonan, 1991). Here we avoid these complexities and
adopt a pragmatic parameterization modeled after the representation of snowmelt used by the
WEPP winter routines (Young et al., 1989; Hendrick et al, 1971). Forest cover is
parameterized by the canopy density parameter Fc, representing the canopy closure fraction
(between 0 and 1). Windspeed, and therefore the corresponding heat and vapor fluxes are reduced
by a factor (1-0.8Fc). Radiative fluxes Qgp, Qi; and Qe in equation (1) are reduced by a factor (1-
Fc). Adjustments are also made to the radiation terms in the calculation of snow surface

10



temperature (equation 22).
DATA

In this paper data collected at the Central Sierra Snow Laboratory (CSSL); Utah State University
drainage and evapotranspiration research farm and Reynolds Creek Experimental Watershed are
used to calibrate and test the model.

Central Sierra Snow Laboratory

The CSSL located 1 km east of Soda Springs, California, measures and archives comprehensive
data relevant to snow. It is at latitude 39°19'N and at elevation 1100m. We obtained the
meteorological and snow observation data for the winter of 1985 - 1986. The meteorological data
is reported each hour and consists of temperature, radiation, humidity, precipitation, and wind
measurements at two levels in a 40 x 50 m clearing and in a mixed conifer fir forest with 95%
forest cover. Only data from the clearing are used here. Snow depths and water equivalent are
measured daily (except on weekends) and eight lysimeters record melt outflow each hour. We
used the temperature, precipitation, radiation (incoming solar and net), humidity and wind
measurements to drive our model and compared model output to measurements of snow water

equivalent, melt outflow and snow surface temperature (infrared sensor).
USU drainage and evapotranspiration research farm

An experiment to measure snow energy balance and sublimation from snow the winter of 1992 -
1993 is described more fully by Tarboton , 1994 #1669]. Data from this work included
measurements of snow water equivalent, snow surface temperature and the meteorological

variables necessary to drive our model.
Reynolds Creek Experimental Watershed

Upper Sheep creek is a 26 ha catchment within the semi-arid Reynolds creek experimental

watershed. Snowmelt is the main hydrologic input and its areal distribution is heavily influenced

11



by wind induced drifting. Detailed descriptions of the various features of the area are given ip
Flerchinger et al. (1992) and references therein. Snow water equivalent measurements are made
biweekly (as weather permits) on a 30.48 m (100 ft) grid over the watershed. A digital elevation
model (DEM) was constructed from a 1:1200 map with 0.61 m (2 ft) contour interval developed
from low level aeral photography. The DEM grid was constructed to coincide with the grid used
for field measurements and provided slope and aspect inputs to the model radiation calculations,
Fig. 2 shows the topography and grid over Upper Sheep creek together with locations of the
instrumentation. Data from the winters of 1985 - 1986 and 1992 - 1993 were used in this study to
test the model running in a distributed mode at each g:;d cell. Snow melt outputs were used as

hydrologic inputs for a water balance study (Jackson, 1994; Tarboton et al., 1995).
RESULTS

The model was calibrated against the CSSL data for the winter 1985 - 1986. The energy balance
and overall accumulation and ablation of the snowpack is governed primarily bjf surface energy
exchange processes. The adjustable parameters involved in these are z,; and Kg, which were
adjusted to obtain a match between water equivalent, modeled and observed (shown in Fig. 3).
and snow surface temperatures, modeled and observed» (Fig. 4) with the model driven by the
measured net radiation input. We then used measured incoming solar radiation to drive the model
and found that the melt is delayed (Fig. 3). Discrepancies were analyzed and attributed to
differences in daytime net radiation, primarily affected by albedo. The albedo parameterization
(Dickinson et al., 1993) has parameters Ayg = 0.95 and Apj; = 0.65 which represent the albedo
of new snow in the visible and infrared ranges. Ayq was reduced to 0.85 to match the daytime net
radiation when compared to measured CSSL 1985 - 1986 data (Fig. 5). The resulting snow water
equivalent comparison (Fig. 3) indicates that some early season melt is not modeled resulting in
slight over accumulation, but the main melt is well modeled. In all results except the line indicated
on Fig. 3, Ay = 0.85 was used. Melt outflow rate was compared to the average from the eight
melt lysimeters, with Kga¢ adjusted to get a good fit. Results are shown in Fig. 6.

Table 1 lists the adjustable parameters that were calibrated against the CSSL data. Table 2
lists the remaining model parameters which were held fixed at their nominal values. The model
was tested against the data from Reynolds Creek and USU drainage and evapotranspiration

research farm without further adjustment of parameters. The Reynolds Creek study applied the
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model to each 30.48 x 30.48 m grid cell over Upper Sheep creek (Fig. 2). The drift factor to
adjust snow input was estimated from the observed grided snow data for 1985-1986 (Jackson,
1994). Fig. 7 shows the drift factors and Fig. 8 compares measured and modeled spatial
distribution of snow about halfway through the snowmelt phase in 1992-1993. Due to space
limitations not all of the comparisons are shown. They indicate that the model correctly represents
the spatial accumulation and melt patterns. Fig. 9 compares measured and modeled snow water

equivalent at the USU drainage and evapotranspiration research farm.
CONCLUSIONS

The tests described have shown that this simple, depth averaged, mass and energy balance
snowmelt model is able to capture the essential physics of the snow accumulation and melt
processes and provide distributed hydrologic inputs. Using parameter values calibrated against
CSSL data the model performed well when tested at other locations. This suggests that the model
is transportable and parameter values listed may be acceptable for wider application. However
further testing against additional data is necessary. In particular we need to test the
parameterization of forest cover and further evaluate the parameterization of albedo and the effect of
atmospheric stability on turbulent fluxes. |
The model is available electronically from David Tarboton (dtarb@cc.usu.edu).
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Figure Captions

Figure 1. Depth of pene&aﬁon of temperature fluctuations into soil with o = 0.005 cm?s.
Figure 2. Upper Sheep Creek topography and instrumentation.

Figure 3. Comparison between observed and modeled snow water equivalent, CSSL.
Figure 4. Comparison between observed and modeled snow surface temperatures, CSSL.
Figure 5. Comparison between observed and modeled net radiation, CSSL.

Figure 6. Comparison between observed and modeled Iﬁelt outflow rate, CSSL.

Figure 7. Drift factor from Jackson (1994). Contours at 0.5, 0.9, 1.5, 2.5, 4 and 6.

Figure 8. Observed and modeled spatial distribution of snow at Upper Sheep creek, April §,
1993.

Figure 9. Observed and modeled snow water equivalent, USU research farm.
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Table 1. Adjustable parameter recommended values.

Parameter Notation Calibrated Value
Surface aerodynamic roughness Zg 0.005 m

Surface conductance Kg 0.02 m/hr

Saturated hydraulic conductivity Ksat 20 m/hr

New snow visible albedo Ayo 0.85

Table 2. Snowmelt model fixed parameters.

Parameter Notation Reference Value
Ground Heat Capacity Csg 2.09 KJ kg1 °C-1
Density of Soil Layer Pe 1700 kg m3
Snow density Ps 450 kg m-3
Capillary retention fraction Le 0.05

Emissivity of Snow Es 0.99
Temperature above which precipitation is rain T, 3°C
Temperature below which precipitation is snow Ts -1°C

Wind/Air temperature measurement height z 2m

Soil Effective Depth De 0.4m

Bare ground albedo Apg 0.25

Albedo extinction depth h 0.1m
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APPENDIX 4A

Multivariate Nonparametric Resampling Scheme for Generation
of Daily Weather Variables

Balaji Rajagopalan, Upmanu Lall, David G. Tarboton and David S. Bowles

Abstract

A nonparametric resampling technique for generating daily weather variables at a site is
presented. The method samples the original data with replacement while smoothing the empirical
conditional distribution function. The technique can be thought of as a smoothed conditional
Bootstrap and is equivalent to simulation from a kernel density estimate of the multivariate
conditional probability density function. This improves on the classical Bootstrap technique by
. generating values that have not occurred exactly in the original sample and by alleviating the
reproduction of fine spurious details in the data. Precipitation is generated from the nonparametric
wet/dry spell model as described in Lall et. al. (1995). A vector of other variables (solar radiation,
maximum temperature, minimum temperature, average dew point temperature and average wind
speed) is then simulated by conditioning on the vector of these variables on the preceding day and
the precipitation amount on the day of interest. An application of the resampling scheme with 30
years of daily weather data at Salt Lake City, Utah, USA. is provided.
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1. INTRODUCTION

Daily weather variations influence agricultural and engineering management decisions. Crop
yields and hydrological processes such as runoff and erosion are very sensitive to weather.
Recognizing the inherent variability in climate, it is often necessary to assess management scenarios for
a number of likely input sequences. Stochastic models are consequently useful for simulating weather
scenarios. Such models need to simulate sequences that are representative of the data. While there is a
substantial literature for rainfall simulation and for other variables one at a time, only a few
“multivariate” models have been developed.

In this paper we develop and exemplify nonparametric procedures for resampling a vector of
daily weather variables, such that selected lag 0 and lag 1 dependence characteristics are preserved.
Dependence is defined in terms of joint or conditional probabilities, rather than correlation.

This work is an off shoot of the ongoing Water Erosion Prediction Project (WEPP) of the
United States Department of Agriculture (USDA). WEPP, is a key model for soil and forest
conservation studies. WEPP, includes a Climate Generator (CLIGEN) and the work presented here
intends to improve it. Hillslope erosion is driven largely by precipitation and a suite of other weather
variables. Hence, the main objective is to generate weather sequences which will be used by WEPP to
estimate hillslope erosion. In this study, we chose a set of five daily variables (Solar Radiation
(SRAD), Maximum temperature (TMX), Minimum temperature (TMN), Avg. Wind speed (WSPD)
and Avg. Dew point temperature (DPT) in addition to Precipitation (P), that are of interest for erosion
prediction. Most of these weather variables are sensitive to precipitation. Solar radiation, dew point
temperature, maximum temperature and minimum temperature are more likely to be below normal on
rainy days than on dry days, while the wind speed may be above normal on rainy days than on dry
days. Consequently precipitation is chosen as the driving variable of the models developed so far.
Typically (see Jones et al. '1972, Nicks and Harp 1980, Richardson 1980), daily precipitation is
generated independently and the other variables are generated by conditioning on precipitation events
(i.e. whether a day is wet or dry).

Throughout this paper we denote the historical time series of the five weather variables chosen
above as [Z]mkj (m=1,..,.NY, k = 1,..,366, j=1,..,NV), where NY is the number of years of record,
NV(=5) is the number of variables considered (SRAD, TMX, TMN, DPT and WSPD). Further,
define [Z]kj and [STD]kj as the corresponding mean and standard deviation vector for each calendar
day k (k=1,..,366) of each variable j (j=1,..,5). The historical time series of the precipitation is
denoted as [P]pk-

We now discuss key attributes of some strategies for resampling or synthesizing vectors of

these variables.
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1.1 Resampling Approaches
Multivariate stochastic simulation of weather variables has not been studied as extensively as
streamflow or precipitation. Two broad approaches that are possible are:
1. Parametric
2. Nonparametric - Bootstrap (Raw, Conditional and Smoothed)

1.1.1 Parametric ,

The parametric approach is the traditional method (see Jones et al., 1972, Bruhn et al. 1980,
Nicks and Harp 1980, Lane and Nearing 1989 and Richardson 1980) for stochastic daily weather .
simulations. Figure 1 summarizes the general structure of the parametric approaches. The general
strategy is to generate precipitation independently and the other variables conditioned on the status of
precipitation (i.e. rain or no rain on the day). The other variables are generated from either
independently fitted statistical distributions to each of the variables and separately for each of the two
precipitation states (i.e. rain, no rain), or independently or jointly fitted auto regressive models of
order 1 (AR-1) to the variables.

Usually the year is divided into periods (seasons) and moments (mean standard deviation etc.)
are calculated for each variable for each period for each precipitation state. The moments are used to fit
statistical distributions or models. Dividing the year into various periods assumes homogeneity within
each period and offers a treatment of seasonality. Jones et al. (1972), Bruhn et al. (1980), Nicks and
Harp (1980) and CLIGEN (Lane and Nearing, 1989) divide the year into 14 day and one month
periods respectively in their works. Richardson (1980) adopted a method, wherein the means and
standard deviations of each periods and each precipitation state are smoothed using Fourier series. The
smoothed daily values of the means and standard deviations are subsequently used for
deseasonalization.

Daily Precipitation is typically generated from a fitted first order Markov Chain for precipitation
occurrence and by sampling from the distribution (such as Gamma, Exponential, Truncated Normal
etc.) fitted for the daily amounts for each period.

One approach to generate the other variables is to fit distributions independently for each
variable for each period and for each precipitation state. Here, the simulations are made under the
assumption that each variable is independent and identically distributed (i.i.d). This approach and its
variants are used by Jones et al. (1972), Bruhn et al. (1980) and CLIGEN (Lane and Nearing, 1989).
In CLIGEN each variable is assumed to be an independent Gaussian variable for each month, with
parameters dependant on the precipitation state transition (e.g. wet to wet, dry to wet etc.). This
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approach does not consider the dependance between the variables nor the serial dependence for each
variable. Only the dependance on the precipitation state or the precipitation transition is considered.

Serial dependance was incorporated by Nicks and Harp (1980) who fit Auto Regressive models
of order one (AR-1) independently to each variable for each period. Consideration of dependance
across variables is added by Richardson (1981) who used a Multivariate Auto Regressive model of
order one (MAR-1). When the cross dependance terms are neglected in MAR-1, it reduces to an AR-1
process. These AR models suffer from the drawback of assuming the data to be normally distributed.
As aresult only linear dependence can be reproduced. In practice data may not be normally distributed.
Transformation of the data to be multivariate normal may be difficult and may lead to biased statistics
upon back transforming to the original space.

The parametric approaches discussed have four main drawbacks, which are (i) Choice of a
model (a statistical distribution or the order of an AR or MAR model) is often subjective and rarely
formally tested on a site by site basis (ii) Reliance on an implicit Gaussian framework (e.g. AR or
MAR) which preserves only linear dependance and is not appropriate for bounded variables (iii) The
fitted models have limited portability in the sense that procedures/distributions used at one site may not
be best at other sites. The last point is important where an agency wishes to prescribe a uniform

procedure over its domain.

1.1.2 Nonparametric

Nonparametric techniques do not require pre-selected distributions or models to be fit to data.
The Bootstrap (or Raw Bootstrap) is a nonparametric technique introduced by Efron (1979). Itis
often used for constructing a confidence region, attaching a standard error to an estimate, carrying out
a test of a hypothesis, or estimating the sampling distribution of some statistic. Historical data is
resampled with replacement. Since it is the same data, the simulations by construction have the same
distributional properties as that of the historical data. Since each resampled observation is drawn
independently, serial dependénce is not preserved. Serial dependence can be accommodated by using
the ‘block-resampling scheme’ (a Conditional Bootstrap) developed by Kunsch (1989) and Liu and
Singh (1992). Here a block of ‘k’ observations is resampled as opposed to a single observation in the
Bootstrap. Serial dependance is preserved within, but not across a block. The block length ‘k’
determines the order of the serial dependence that can be preserved.

A property of the Bootstrap technique is that the simulated samples will only have values that
have occurred in the historical data and consequently the simulations are restricted to the historical set
of values. Silverman (1986, p. 142) points out that this behaviour may reproduce spurious fine
structure in the original data. This is not a desirable feature while applying the technique to simulation
of daily weather variables, where we may wish to have simulated values that have not been observed
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in the historical data and may be also beyond the maximum/minimum of the observed data. This
problem can be alleviated by using ‘Smoothed Bootstrap’.

In the Smoothed Bootstrap (Silverman 1987, p 144), each observation y; (i=l,..,n) is
considered to be representative of aregion (yj-h , y;+h) around it. The extent of this region his called
the bandwidth and is determined from the data. Intuitively, it is desirable to resample such that the -
maximum weightage is given to the observation yj and weights decrease when moving towards yj-h
or yj+h. This is accomplished by having a weight function centered at each observation. The weight
function is usually chosen to be a valid probability density function, such as the Gaussian (N(0,1)).
The simulation proceeds by picking an observation y; with replacement from {yj,...yq} and then
generating a value from N(yj, h) with h specified. Formally, the Smoothed Bootstrap is equivalent to
resampling from a kernel density estimate (k.d.e). Kernel density estimation is a nonparametric
procedure described in section 2.3.

In this paper, we develop a Smoothed Conditional Bootstrap that considers multivariate and
serial dependence amongst the variables of interest. Hereafter, we refer to the scheme presented as
the NP model. We first provide the motivation and main ideas of the model. The simulation
algorithm is outlined next. The utility of the model is then illustrated through application to daily
weather data at Salt Lake City, Utah, USA.

2. MAIN IDEAS OF THE NP MODEL

Our goal is to develop an approach that is driven directly by the observed data with reasonable
assumptions, is easy to implement, is readily transferable from site to site and capturés the relative
frequencies of the data in a natural manner. We do this by defining the appropriate probability
densities that we need to resample from and then discuss their estimation.

2.1 Overview of the NP model

A conceptual flow chart of the model is shown in Figure 2. The historical data of the other
weather variables is standardized as [X]lkj“—'([zhkj - [Z}k)/[STD]kj where Lk and j are the same as
defined in section 1. This removes the seasonality present in each variable. Precipitation for day ‘t” (Pp)
is generated from the wet/dry spell model as described in Lall et al. (1995) briefly summarized in
section 2.2. However, the user can generate the daily precipitation from his favourite model.

In the NP model the year is divided into four periods or seasons (for the Salt Lake City example
these are Season 1 (Jan-mar), Season 2 (Apr-Jun), Season 3 (Jul-Sep), Season 4 (Oct-Dec)).
Simulations for days in any particular period are made using the historical data of that period.
Subsequently, the comparison between the simulations and the historical data are also made the same
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scale. One could choose different periods (e.g. monthly, weekly etc.). We chose the above four
periods so as to be consistent with the wet/dry spell model (Lall et al., 1993) for daily precipitation.
The aim of the model is to capture the day-to-day dependence present between the variables. The
standardized vector of variables x; for any day ‘t’ is simulated from the multivariate conditional p.d.f
f(x¢ | Vt--:V*). Where, x¢ = standardized vector of [SRAD, TMX, TMN, WSPD, DPT]; that is to be -
generated for day t, Py is the generated precipitation for day t from the wet/dry spell model; x(.{ =
standardized vector of [SRAD, TMX, TMN, WSPD, DPT];.1 already generated for day t-1, V* =
[Xt-1, P¢] is the conditioning vector, ‘d (=5)’ is the number of variables to be generated, d’(=6) is the
number of conditioning variables and dg=d+d’.
The conditional density f(x; | Vi=V™) is defined as,

fxeV)  _ f(x,V=V")

" (1)
j f(x,V)dx, fy(V=V"

f(x; 1 Vi=V*¥) =

where f,(V=V*) is the marginal density of V, evaluated at a current vector V*. The standardized
sequences X are transformed to z; = x¢ * [STD] + [Z] , where k is the calendar day associated with
day ‘t’. Thus, the key idea here is the estimation of this conditional probability density function from
the historical data using nonparametric density estimators (kernel estimators) and subsequently
simulating or bootstrapping from it. The mechanism of kernel density estimation is described in section
2.3, and the algorithm for simulation from a conditional p.d.f (as in Equation 1) using kernel density
estimators is developed and outlined in section 3.

2.2 Precipitation Model

The seasonal wet/dry spell model for daily precipitation described fully in Lall et al (1995) has
three random variables - wet spell length, Ly days, dry spell length, L4 days, and wet day
precipitation amount, P inches. The periods(seasons) are as defined in the previous section. Variables
wsp and dsp are defined through the set of integers between 1 and the season length, and P is defined
as a continuous, positive random variable. A mixed set of discrete and continuous random variables is
thus considered. Successive wet day’s precipitation amount is taken to be independent and the
precipitation is independent of the wet spell length (Lyy). Correlation statistics computed for the data
sets analyzed supported these assumptions.

The p.d.f.’s of wet day precipitation amount f(P) and the probability mass functions (p.m.f.’s)
of wet spell length f(Ly,) and dry spell length f(I.q) are estimated for each season using kernel density
estimators.
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A dry spell is first generated using f(L4). Then a wet spell is generated using f(Ly,).
Precipitation for each of the ‘L, wet days is then generated from f(P). The process is repeated with
the generation of another dry spell. If a season boundary is crossed, the p.d.f.’s used for generation
are switched to those for the new season. This procedure continues until a synthetic sequence of the
desired length has been generated. The p.d.fs f(Ly), f(Lg) and f(P) are estimated using kernel density :
estimators as described in Lall et al. (1993) and Rajagopalan et al. (1995). At this point the kernel
density estimation is generically described and the estimators used in this work are outlined below.

2.3 Kernel Density Estimation

The kernel density estimator generalizes the frequency histogram as an estimator of the p.d.f.
While the histogram is capable of showing some features of the data, it has several drawbacks. It is
- difficult to manipulate analytically, it is not easy to visualize for multivariate situations, and it allows
for no extrapolation beyond the data. The indicated frequency distribution is sensitive to the class
width, as well as the origin of each class. Silverman (1986, p.9-11) illustrates these problems
graphically. One can improve the histogram by centering rectangular boxes at each observation (to
gain independence from choice of origin). A kernel density estimator, introduced by Rosenblatt
(1956), is formed by centering a smooth kernel function at each observation. Kernel density
estimators for univariate continuous variables, univariate discrete variables and multivariate continuous
variables are now defined.

2.3.1 Univariate Continuous Variables
We stated earlier that the Smoothed Bootstrap is equivalent to sampling from a kernel density
estimate. The kernel density estimator for a continuous variable (such as the wet day precipitation P) is

defined as
n
= 1 P-P; 2
f(P) 21 LKE) | )
where K(.) is a kernel function centered on the observation P;, and can be any valid probability density
function and h is a bandwidth. The bandwidth h controls the amount of smoothing of the data in the

density estimate. An estimator with constant bandwidth h (like in Equation 2) is called a fixed kernel
estimator. Commonly used kernels are:

Gaussian Kernel K(t) = (2m)-1/2 e-t2/2 (3a)
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Epanechnikov Kernel K =0.75(1-t2) el <1 (3b)
Bisquare Kernel K(t) = (15/16) (1 - t2)2 Itl <1 (3¢)

An evaluation of K(.) represents the weight given to the observation P; that is based on distance
between P, and P;. One can see from Equation 2, that the kernel estimator is a convolution estimator
that forms a local weighted average of the relative frequency of observations in the neighborhood of
the point of estimate. The kernel function, K(.) prescribes the relative weights, h prescribes the range
of data values over which the average is computed. This is illustrated in Figure 3.

The p.d.f of wet day precipitation f(P) is obtained by applying, a kernel density estimator to log

 transformed data. Note that most of the data of wet day precipitation is concentrated near the lower
boundary (i.e. 0.), as a result the p.d.f estimates using the kernel estimators are highly biased due to
the boundary problem. The log transformation on such heavﬂy skewed data alleviates the boundary
problem. The resulting estimator is given as:

) = $ilogP) =X Ly nPrn(®, @

The Epanechnikov kernel is used and the bandwidth h is chosen for the log transformed data using the
recursive approach of Sheather and Jones (1991) to minimize the Mean Integrated Square Error
(MISE) of estimate of f(log(P)).

Note that no assumptions regarding the parent density of P have been made thus far. We need to
specify only the bandwidth h and the kernel function. Silverman (1986) points out that the kernel
density estimator is more sensitive to the choice of the bandwidth than to that of the kernel.

2.3.2 Univariate Discrete Variables ‘

In this section, we present procedures for the estimation of the univariate probability mass
functions for discrete variables (such as wet spell lengths w, dry spell lengths d). We recommend
the Discrete Kernel (DK) estimator developed in Rajagopalan and Lall (1995). The DK estimator

for the p.m.f. f(L), where L is either w or d, and n is the corresponding sample size is given as:

Lmax

L) = 2 Kd< | (5
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where &j is the sample relative frequency (nj/n) of spell length j, n is the number of spells of
Lonax
length j, L., is the maximum observed spell length (note that ¥ aj = 1), K4q(.) is a discrete

, j=l
kernel function, and L, j and h are positive integers. The kernel function Ky(.) is given as:

Ky() = atj2+b for i<l (6)

The expressions for a and b for the interior of the domain, L > h+1 and the boundary region L <h
are developed in Rajagopalan and Lall (1995).

The bandwidth h is estimated by minimizing a Least Squares Cross Validation (LSCV)
function given as,

Lmax ~ Lmax - -~
Lscviy =3, @92 - 2) 0 & ™
=1 j=1

where, ?_j(i) is the estimate of the p.m.f of spell length j, formed by dropping all the spells of
length j from the data. This method has been shown by Hall and Titterington (1987) to
automatically adapt the estimator to an extreme range of sparseness types. Monte Carlo results
showing the effectiveness of the DK estimator with bandwidth selected by LSCV are presented in -
Rajagopalan and Lall (1995).

2.3.3 Multivariate Continuous Variables
Extending the idea of the kernel density estimator for univariate continuous variables, a kernel
density estimate of the multivariate p.d.f of a vector y is defined as (Silverman, 1986, p. 76-78):

f(y) = 13 K(u) @®)
i=1

-y S y-y)
h2
denotes the d dimensional random vector whose density is being estimated with, yj =

, and K(u) is a multivariate kemel function. y =[y1,y2,-.ydlT

where u =

[¥13¥2i>--¥ailT i=1to n the sample values of y; n is the number of sample vectors; h the kernel

bandwidth and S the covariance matrix. Here we use a Gaussian kemnel function given as,
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K@) = L /2
w (2m)¥2det(S)!/2 he e )

Just as in the univariate case described in section 2.3.1, K(u) represents the weight given to an
observation y; that is based on distance between y, and y;. The distance used here is the Euclidean
distance modified to recognize the covariance of the y. It can be seen that the estimator in Equation 8,
is similar to the univariate estimator in Equation 2 since it is a local weighted average of the relative
frequency of observations in the neighborhood of the point of estimate. Here too the kernel function,
K(.) prescribes the relative weights, h prescribes the range of data values over which the average is
computed and the covariance S provides the orientation.

Here we choose the bandwidth as the one that minimizes mean integrated square error in f(y) if
the underlying distribution is assumed to be multivariate Gaussian. Silverman (1986, p 86-87) gives
an appropriate h to use for a multivariate Gaussian p.d.f. using the Gaussian kernel as,

h ={(4/(2d+1))1/(d+4)} n-1/d+4) . (10)

Here n is the number of observations and d is the dimension. Note that h — O as n — o so that the
kernel density estimate is consistent. However, as the dimension d increases h also increases. This is
because in higher dimensions large regions of high density may be completely devoid of observations
in a sample of moderate size. The bandwidth in such a situation has to be bigger to cover large regions.
The above choice of bandwidth, is optimal for p.d.fs that are near Gaussian and is an adequate choice
for many cases (Silverman, 1986, p 45-48). Cross Validation or Plug in methods could be used here
to choose h as in the wet/dry spell model. However, this increases the computational burden
substantially. Recall that the parametric approaches often assume a Gaussian distribution. In a
Bayesian context using this bandwidth can be thought of as developing a posterior kernel density
estimate with a Gaussian prior. The resulting tail behaviour and degree of smoothing supplied will be
consistent with an underlying Gaussian p.d.f, with some adaption to local features. '

An attractive feature of kernel estimators of the p.d.f is that they are local (use only a
neighborhood around the point of estimate) and hence are not overly effected by outliers. Since they
make no prior assumptions of the underlying probability density function, they are data driven and
robust and are portable across sites/data sets.

In the bootstrap context we have a region that each observation y; represents. The orientation
and shape of the region is given by the scaling factor hS and the kernel function K(u). Resampling
from the kernel density estimate entails picking a point y; uniformly in [y{,..,yp] and then simulating
from the kernel K(u), i.e. N(y;,h2S). We extend this approach formally for simulation from a
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multivariate conditional p.d.f in the following section. For details on kernel density estimation refer to
Silverman (1986) and Scott (1992).

3. Kernel Density Estimation of Multivariate Conditional p.d.f
For the simulation of interest here an estimate of the conditional p.d.f f(x; | V¢ =V*) is needed. -

The strategy used here is similar to the one used by Tarboton et al (1993) for streamflow simulation.

Applying the estimator in Equation 8 to the conditional p.d.f in Equation 1 with sample vectors xj=[x;,

Xt-1,Pt]; denoted as [x;,Vi] we get:

Xi-X;

[xexg (VYIS
» Vv,

L (11)

n
f(xy | V=V =1 —1 1
tt nhe fv(V*)E det(S)12 h?
where S is the dg by dg covariance matrix of the vector (x;,V;) estimated from historical data. Let the
matrix S be partitioned as, '

S, ST
S = { o } (12)
SX\' SV

where S is the d by d covariance matrix of x, Sy is the d’ by d’ covariance matrix of V and Sy the d
by d’ cross covariance between x and V. Using the Gaussian kernel function (i.e. Equation 9)
Equation (11) can be reduced to a weighted sum of Gaussian functions,

n
f(x¢ | Vi =V*) = Y wiN(bi,e) (13)
i=1
where,
n * x7.4T vy,
wi= W'i/z w'i, w'i =exp(-aj/2); aj= (v -Vil [ng] [V -Vl ); (14)
i=1
b = xj + AV -ViIDISvI[Sxv]; e=h2 (Sx - Sxv 1Sy 1Sxy) (15)

n
Note that Z wi=1

i=1
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From Equation (13) we see that the conditional p.d.f reduces to a weighted sum of Gaussian

functions. It can be thought of as a slice through a multivariate density function, estimated as a

weighted sum of slices with the same orientation through the kernels placed on each observation.

Simulation from the conditional p.d.f can be achieved by picking a point x; with probability wj,

then sampling from N(bj,c).

3.1 NP Simulation algorithm

The simulation proceeds as:

II.

Iv.

V.

12

Simulate Precipitation for all the days of the year from the wet/dry spell model.

Estimate the model parameters (bandwidth h and the covariance matrix S) from the data
for each season.

At the start of each period of interest initialize t=0, x; = [0]
Generate x; sequentially (day by day) from f(x; | V), where the conditioning vector V consists
of the previous day’s vector x¢.] and the current day’s generated precipitation Pg

(i.e. Vi = [xt-1.Pt]) as:
1. Estimate weights (wj) associated with each data point (x;) ( Equation 14)

2. Resample an index i using wj (i = 1,..,n) as probabilities.

3. Estimate the conditional mean (b;) and conditional variance (c;) using the picked point xj and
V; (Equation 15)

4. Generate vector X¢ = bj + € where € is from a multivariate normal distribution with mean 0
and variance c (following Devroye, 1986, p. 565)

5. Recover z; as z; = X¢*[STD] + [X ] where k is the calender day corresponding to day t.

At the start of a new simulation go to III.
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4. MODEL APPLICATION AND PERFORMANCE MEASURES

To demonstrate the utility of the resampling model for generation of daily weather variables, the
model was applied to daily weather data from the station Salt Lake City in Utah. Thirty years of daily
weather data was available from the period 1961-1991. Salt Lake City is at 40946’ N latitude, 1110 -
58’ W longitude and at an elevation of 1288 m. Most of the precipitation comes in the form of winter

snow. Rainfall occurs mainly in Spring, with some in Fall.

We shall first outline the experimental design and then some measures of performance used to

judge the utility of the model.

4.1 Experiment cfesign

Our purpose here is to test the utility of the NP generation scheme. The main steps involved in

accomplishing this are:

1. Daily precipitation is generated from the wet/dry spell model.

2. The other variables are generated following the simulation algorithm described in section 3.1
3. Twenty five synthetic records of thirty years each (i.e. the historical record length) are simulated

using the NP model.

4. The statistics of interest, described below are computed for each simulated record, by each period

and compared to statistics of the historical record using boxplots.

4.2 Performance measures

The following statistics were considered to be of interest in comparing the historical record and

the NP simulated record of other weather variables.
Moments:

1. Mean of each variable for each season.

2. Standard deviation of each variable for each season.

3. Skew of each variable for each season.

4. Co-efficient of variation of each variable for each season.
Relative Frequencies:

5. 25% quantile of each variable for each season.

6. 75% quantile of each variable for each season.
Dependence:

7. Cross correlation on any given day between the variables for each season.

8. Lag-1 daily Cross correlation between the variables for each season.

13
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9. Lag-1 daily correlation of each variable for each season.

5. RESULTS

The statistics of interest calculated from the simulations are compared with those for the
historical record using boxplots. A box in the boxplots (e.g. Figure 4) indicates the interquartile range
of the statistic computed from twenty five simulations, the line in the middle of the box indicates the
median simulated value. The solid lines correspond to the statistic of the historical record. The
boxplots show the range of variation in the statistics from the simulations and also show the capability
of the simulations to reproduce historical statistics.

Figures 4 through 8 show the boxplots of moments and relative frequency measures of Solar
Radiation, Maximum Temperature, Minimum Temperature, Average Wind Speed and Average Dew
Point Temperature respectively. It can be seen that the historical values of mean, and the quantiles are
well reproduced, while standard deviation, coefficient of skew and coefficient of variation are not quite
well reproduced. This is to be expected as the kernel methods inflate the variance by a factor equal to
( 1+h2) (see Silverman 1986, p. 143) which in turn effects the skew and the coefficient of variation. It
may be desirable to have to have a slight increase in the variance of the simulations as compared to that
of the historical.

Dlustrative statistics of wet spell lengths, dry spell lengths and wet day precipitation for the
simulations from the wet/dry spell model are also estimated and are shown in Figures 9,10 and 11
respectively. Figure 9 shows the boxplots of average wet spell length, standard deviation of wet spell
length, fraction of wet days and length of longest wet spell length for each season. Figure 10 shows
the boxplots of these statistics of the dry spell length. Figure 11 shows the boxplots of average wet
day precipitation, standard deviation of wet day precipitation, percentage of yearly precipitation in
each season. The boxplots in Figures 9, 10 and 11 show that the historical statistics are reproduced
well by the simulations.

Figures 12 and 13 show the boxplots of the lag-O cross correlation and lag-1 cross correlation
between the variables. Figure 14 shows the lag-1 auto correlation of each variable for each of the four
seasons. The correlations from the simulations and the historical correlations seem to be different in a
number of cases.

One reason for this mismatch of the correlations is that the precipitation is supplied externally
from the wet/dry spell model. As a result the covariance between x;.1 and P; need not correspond to
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that of the historical covariance between between them. This introduces a bias in the conditioning plane
from which x; is generated and results in a mismatch of the correlations. One way to get around this
problem is to generate the precipitation also in the multivariate model, i.e. simulate x; from f(x¢ | x;.1)
where both x; and x;. are of dimension 6. This should reproduce the correlations statistics. However,
negative values for precipitation may then be simulated. Since most of the precipitation is concentrated -
near 0., simulating precipitation also along with the other variables may lead to oversmoothing of the
mode of the precipitation density.

Another reason, could be that there are two different process which are the one with zero
precipitation and one without. Since there are two different processes with different correlation
structure, the combined correlations need not match. A multivariate autoregressive model of lag 1 with
precipitation supplied exogenously (like in the NP model described here), that can be thought of as a
counterpart in the parametric frame work, will also suffer from the correlation mismatch.

6. SUMMARY AND CONCLUSIONS

A multivariate nonparametric model NP that aims at capturing dependence upto lag-1 was
presented and illustrated. The simulations are made from the conditional p.d.f estimated from the data
using kernel density estimators. The kernel estimators being local average estimators of the target
function, have the advantage of readily admitting arbitrary probability densities without requiring that
they be hypothesized or formally identified. Broader dependence structures can be consequently
considered. The need to choose/justify and fit the best p.d.f is side stepped.

The bandwidth is the key parameter in the NP model, as it determines the degree of smoothness
that will be imparted to the p.d.f. The larger the bandwidth the smoother the p.d.f and vice-versa.
Choosing h automatically (using cross-validation or other approaches Scott 1992) from the data would
be more appropriate than the choice used here. However, the additional variance in the choice of h
induced by such an estimation process may detract from its use where the primary purpose is to
resample the data. Bandwidth selection methods are undergoing continuous improvement. We expect
to implement more formal selection procedures in due course. One could also use a local covariance
matrix estimated at each data point using a few neighbors of that point (i.e. S; instead of S in Equation
8). Tarboton et al (1993) use this method for streamflow simulation.

Another problem with simulations is the boundary effect. For the variables that are bounded
(e.g. Solar Radiation and Precipitation), values that violate the bounds could be generated. Typically
these are censored to the bound. This may introduce a bias in the simulations. Procedures to better
address this problem in the kernel framework are described in Muller (1989) and Lall et al (1993).
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We chose to apply the NP model on a seasonal time scale, because the precipitation model that
was used to drive the NP model is a seasonal model. However, we checked the results of the seasonal
NP model at monthly time scale, and found the performance to be similar (results are not presented
here). ‘

The NP model developed here underscores our growing conviction that nonparametric
techniques have an important role to play in improving the synthesis of hydrologic time series. They |
can capture dependence structure present in the data, without imposing arbitrary distributional
assumptions, and produce synthetic sequences that are statistically similar to the historic sequence.
The idea of resampling the data with appropriate perturbation of each value while maintaining selected
dependance characteristics (or data sequencing) is easy to accept as a practical matter. A Markovian
interpretation of the NP model described here is apparent upon thinking about the manner in which the-
1-step transition process works. The value to be simulated at the next time step can be thought of as a
transition to any of the states within a bandwidth from the state of the current time. The conditional
p.d.f can be viewed as approximation to the transition probabilities. Thus, the NP model can be seen
as a 1-step Markov model with the transitions estimated nonparametrically.

We are working on improving the multivariate, nonparametric resampling scheme using nearest

neighbor and similar methods.
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I. Data
Given the historical time series of precipitation Py

and other weather variables [z ] mkj
where, m= 1,.,.NY,k=1,..,366,j=1,..NV

II Deseasonalization
Treatment for Seasons (e.g. separate analysis
by season, removal of seasonal means etc.)
Deseasonalization

l

‘ IIT Generation
Precipitation is generated independently day by day.
Occurrence: Markov Chain or Point Process
Amount: Exponential, Gamma, Truncated normal etc.
‘ : fitted to data.

IV|Generate z;

No

Consider serial Yes
dep.?

- Fit distribution for each variable for ("- Fit Auto Regressive modelof )
each period (season) and for each - order 1 (AR-1) for each variable
precipitation state. Generate random for each period. And generate from
vectors from appropriate fitted distribution them.

(depending on the precipitation status) (This preserves lag dependance and
no cross dependance)
: or
- Fit Multivariate AR-1 to the data
and simulate from it.
(This preserves lag and cross
\ dependance up to lag-1) Y.
Figure 1: General Structure of Parametric Approaches.
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Given the the series [z k) and Pk
where, m=1,.,.NY,k=1,..,366,j=1,.,.NV

Section 2.1 l, :
Deseasonalize [z] ik as,

[X]mk;j = ([ Zlmkj {Z]iG)/ISTD Ij
where [Z]kj and [STD]; are vectors of means

and the standard deviations of variable j
for calendar day k

1
Generate a precipitation sequence P¢
Section 2.2 ‘ " from Nonparametric Renewal Model
. (NPR)

>

Given x¢.] and Py
Simulate x; from a kernel density
estimate of the p.d.f f(x¢ | x¢.1, Py

Section 3 and
3.1

Recover z¢ as
zy = x*[STD]; + [Z]kj where k is
the calendar day corresponding to day t

(o))

Figure 2: Overview of Development of the NP Model.



Figure 3: Example of kernel density estimation using 5 data points with
Gaussian Kernel, h = 0.5. '
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75% quantile and co-efficient of variation of SRAD for the four
seasons.
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Figure 6:

Boxplots of mean, standard deviation, co-efficient, 25% quantile,

75% quantile and co-efficient of variation of TMN for the four

seasons.
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Figure 7:

Boxplots of mean, standard deviation, co-efficient, 25% quantile,
75% quantile and co-efficient of variation of DPT for the four
seasons.
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APPENDIX 4B

A Kernel Estimator for Discrete Distributions

Balaji Rajagopalan and Upmanu Lall
Utah Water Research Laboratory
Utah State University, Logan, UT - 84322-8200

Abstract

We present a discrete kernel estimator appropriate for estimating probability mass functions
(p.m.f.’s) for integer data. Discrete kernel functions analogous to the Beta functions used as
kernels in the continuous case are derived for the interior and for the boundary of the domain. An
integer bandwidth is considered. Cross validation is used for bandwidth selection. The estimator
was motivated by the need to characterize processes (e.g., mixtures of geometric distributions)
with long tailed distributions with high mass near the origin, and integer arguments of the random
variable. Monte Carlo comparisons with the Hall and Titterington [8] (HT) estimator are offered.
An application for estimating the p.m.f.’s of wet and dry spell lengths for a nonparametric renewél'
model of daily rainfall is also presented. Other possible methods for obtaining discrete weight

sequences are also presented.



1. BACKGROUND

The problem of nonparametric smoothing of the empirical discrete p.m.f (or multinomial
cell proportions) has been of interest in recent years. However, it has not been studied as
intensively as nonparametric density estimation, its counterpart in the continuous case. Hall and
Titterington [8] mention that smoothing can be beneficial when there are many cells with small or
zero frequencies, i.e the data are sparse. Here we consider that we have a sample x1,...,xp forn
multinomial trials with possible outcomes 1,2,...kmax € V with probabilities of occurrence
P1»--Pkmax that are unknown. Estimates D of the probabilities p; may be obtained as sample
relative frequencies (Bj = nj/n) or cell proportions, or by smobthing the pj. In the latter case we
presume that V is an ordered set and that “distance” ‘between' its members is definable through a
standard Lebesgue measure. We consider cases where the set V may be bounded or unbounded,
and focus on developing an appropriate smoother for the sample relative frequencies that properly
deals with the discrete nature of the process.

Our practical interest lay in developing a discrete, nonparametric p.m.f for data on the
length (in days) of dry or wet spells of rainfall. The shortest spell considered is 1 day. In general,
the longest possible spell is not known a priori. Data suggests long right tailed distributions for dry
spell length that may correspond to a mixture of geometric p.m.f.’s (see Rajagopalan et. al. [10]).

The concept of smoothing in the context of multinomial cell probability estimation was
introduced by Good [6 and 7]. This was later studied and improved by Fienberg and Holland [5],
Stone [13], Titterington [14], Titterington [15], Aitchison and Aitken [1], Titterington and
Bowman [16] among others. Bishop et al [2] show that these estimators are often better than the
cell proportion estimate under squared error loss. Hall and Titterington [8] argue that p; may not
be consistent in data sparse situations. The smoothing estimators developed by Wang and Van

Ryzin [17], Simonoff [12] and Hall and Titterington [8] formed a starting point for our work.
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The general form of smoothing estimators in this context is given by

j=oo

Ei = z K(i,j,h) 'f)'j 1,j € 1, the set of integers (D)

j= oo

K(i,j,h) is a weight function or kernel, 'ﬁj is the relative frequency of cell j and h is called the
bandwidth or window width. ‘

Wang and Van Ryzin [17] developed a class of estimators of the form (1), using a
Geometric kernel (WV) (K(i,j,h) = 0.5h(1-b)li-il  if li-ji21; K(jh)=(1-h) if i=jand he [0,1]).
The “drop off” of weights associated with the Geometric kernel is rapid. Wang and Van Ryzin
[17] estimate h under an approximate (MSE) criterion formed by truncating the Geometric kefnel
beyond two cells. As a. result, very little smoothing is obtained in most cases and not much may be
gained for sparse data.

By imposing a smoothness constraint on the cell probabilities, Simonoff [12] obtained
relative consistency results for an estimator based on a maximum penalised likelihood criterion
(MPLE). In this approach, the estimates p; are solved by minimizing a penalized likelihood

function defined as,

Ku kKu
L = Y njlog®) -BY, {log@i/Pi+1)}?
i f=1

i=1
such that

Ky :
>, i =1 @)
i=1

B =0, is a smoothing parameter, and V : [1 k]

The estimates from MPLE depend significantly on the extent of estimation required (i.e.,

k) beyond the maximum observed cell (i.e., kmax). This is of concern, because we would prefer
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a natural extension of the tail of the p.m.f by the method used, rather than a prior specification of
its extent.
The estimator developed by Hall and Titterington [8] (here after referred to as HT) is given

as,
}:oo

Bi= 2, Wb 5 3)
j:-oe

jmoo

where W(i,j,h) = W, h>1and s(h) = z K(i/h) . K(.) is any suitable continuous

IELCE

univariate kernel function, with compact support satisfying the conditions of positivity, integration

to unity, symmetry, and finite variance which are,
‘(a) K(u) > 0; (b) IK(u)du =1;(¢) .[uK(u)du =0; (d) ,[uZK(u)du= K2#0 4

where (u = (i-j)/h), and s(h) is a multiplicative factor required to normalize the continuous variable

kernel function for use with discrete data, such that the desired conditions on W(.) viz.

j=oo j=oo
Z W(,j,h) =1 and Z j W(,j,h) = O are satisfied. Hall and Titterington [8] proposed a
j = .00 J = .00 .

cross-validatory procedure for selecting h. This was later studied by Dong and Simonoff [3] who
extended this estimator to boundary kernels .

It is well known that kernel estimators suffer from increased bias in the boundary region
(i.e. 1 £i< h+1 in our situation of interest). For the estimates of cells in the boundary there is a
lack of full complement of observations on either side of the cell of estimate. As a result, the
desired conditions on W(i,j,h) mentioned above will not be preserved. To correct this, special
boundary kernels that satisfy the required conditions are used (Miiller [9]). Miiller [9] formally

developed special boundary kernels in the continuous case. Dong and Simonoff [3] developed
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boundary kernels (condition 4(a) is relaxed) that could be used in the HT estimator for the discrete
case. We refer to the HT estimator with the boundary modification of Dong and Simonoff [3] as
HT/DS.

We performed comparisons of these three estimators (viz. WV, MPLE and HT/DS) on data
generated from long tailed distributions (see Rajagopalan et. al. [10]) and found HT/DS to be the
best. Hence, we compare the relative performance of the estimator we develop later in this paper
with HT/DS.

For finite samples, some disquieting aspects of the HT estimator become apparent. The
non-integer bandwidth leads to an effective kernel that also varies with h in a manner quite different
from that prescribed by (4). The effective integer support of W(i,j,h) is [(i-h™),(i+h™)], where h*
is the closest integer greater than or equal to h. HT/DS kernels are defined as quadratics or other
polynomials over [i-h,i+h]. Since this is not the effective integer support of the kernel the effective
kernel over the space of integers is not the quadratic defined.

Alternatively, it is possible to develop a kernel that recognizes the data to be in integer
space, has an integer bandwidth and satisfies all the required conditions in the integer space. This
also obviates the need for normalization of the kémel weights as done in HT/DS.We explored this
line of thought and, sought a direct, discrete analog of the continuous kernel density estimator.

The estimator is first presented. Bandwidth estimation is described next. Monte Carlo
comparisons with HT/DS are then present. Comparisons with real data sets follow. Discussion of

the new estimator and other possible discrete estimators conclude the paper.

2. THE DISCRETE KERNEL ESTIMATOR (DKE)

We define our estimator pj for cell i through a weighted linear combination of the sample relative

frequencies, pj as,

Page 5 Tue, Feb 21, 1995



kmzx
o~

Bi = Y, K(t) )
=1

where 1,j and h are positive integers, = (i-j)/h, K(t) is a kernel function, and V : [1,e]. In the

continuous case, Epanechnikov [4] showed that the MSE optimal kernel of second order, is the

quadratic kernel (QK), also known as the Epanechnikov kernel. The general form of the QK is, .
Kw=auZ+b for lul<l (6

In the continuoué case, a=-0.75, b = 0.75. Scott [11], p. 140, Equation 6.25 points out that this
corresponds to a Beta density function, defined fort € [-1,1]. Other members of this class can be -
used if additional smoothness is desired. 4

Here, we chose a discrete quadratic (DQ) kernel of the form K(tj) = atj2 + b, where tj =(i-
j)/h. The main focus then is to specify the constants a and b for the interior (i > h+1) and the

boundary region (1 £1i < h+1). The constants a and b are solved to satisfy : (A) the kernel function

j=i+h ..
goes to zero for li-jl 2h, i.e K(tj) =0 for ltj 21, (B) sum of the weights is unity, i.e z K(%J-) =1
rnd
j=i+h .. =
and (C) the first moment of the kernel function is zero, i.e z K(%J—)tj = 0. Note that the above
j=i-h

conditions are the discrete versions of the conditions given in Equation (3) for continuous variable
kernels. One could choose higher order Beta kernels and derive results similar to these that follow
for DQ.

For the interior region (i > h+1) using conditions (A) and (B) gives Equations (7) and (8),

K(ti+h) = K(ti-p) =0 (7)
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j=i+h
D @g2+b = 1, where tj = (i-j)/h (8)

j=i-h

Condition (C) is satisfied if a=-b. The coefficients a and b can now be expressed in terms of the

bandwidth h as,

q = _=3h and b= ~3h 9)
(1-4h?) - (1-4h2)

For the boundary region (1<i<h+1) condition A is modified as,

K(t) =0 for t < -1 and t 2q where q = (i-1)/h. (10)

Applying conditions (B) and (C) we get Equations (11) and (12).

j=i+h
(ath +b) = 1 D
=1 :
j=i+h
z tj(ath +b) = 0 (12)
=1
Solving for a and b we get,
= -D 1 - aC ] 13
a T X ( £ oD ), b=l 6h2](h+‘i) (13)

4h3  12h3(h+)

where,

C = h(h-1)(2h-1) + (i-2)(i-1)(2i-3) ’
-h(h-1) + (1-2)(i-1)
E = ~(h(h-1))2 + ((-2)G-1))?

i
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From Equation (10) it can be seen that at the boundary (i.e., i = 1) the weight associated with the
kernel is zero. This is not desirable because, for long tailed distributions defined on the interval
[1,0) most of the mass is concentrated right at i=1. Clearly, using the boundary modification in
Equation (13) for estimation of p.m.f at the boundary (i.e., i=1) will introduce a large bias in the
estimate. Therefore, we need a further modification for estimation at i=1. By not enforcing the

K(t)=0ati=1, we modify (A) to be
K(t) = 0 for t< -1 | (14)

while Equation (11) and (12) remain the same. Solving Equations 14, 11 and 12 for a and b we

get,
_D 1 - 1-2Cq1 15
a 2h2x(_E____QQ.)’ b [16112]h (15)
4h3 12h*
where,
C = h(h-1)(2h-1)
D = -h(h-1)
E = -(h(h-1))2

From Equations (9), (13) and (15) note that the kernel and hence, the estimator pj is expressed
strictly in terms of the bandwidth h. An optimal choice of h then completes the definition of the
estimator.

Three criterion often used for bandwidth estimation are (1) direct minimization of average

mean square error (MSE) (2) Maximum likelihood cross validation (MLLCV) and (3) Least squares
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cross validation (LSCV). These could be optimized over a discrete set of h values.
We tested all the three methods and found LSCV to be the best. Hall and Titterington [8]
and Dong and Simonoff [3] also argue in favour of LSCV. The bandwidth is selected by

minimizing the LSCV function given as,

kmmx kmax
LSCV() = Y, 3;)% - 23 B.j n; (16)
i i=1 ,

i=1
where, p_j is the estimate of the ith cell, by dropping thc'.ith cell and n. In a related context, Hall
and Titterington [8] also show that cross-validation automatically adapts the estimator to an extreme
range of sparseness types. If the multinomial is only slightly sparse, cross-validation will produce
an estimator which is virtually the same as the cell-proportion estimator. As sparseness increases,
cross-validation will automatically supply more and more smoothing, to a degree which is
asymptotically optimal.

An example application comparing DKE (with DQ kernel) to HT/DS with QK based
kernels for four data sets is shown in Figures 1, 2, 3 and 4. The data in Figure 1 was sampled
from a Geometric distribution (G1) defined as G(1t=0.2). The data in Figure 2 was sampled from a
mixture of two Geometric distributions (G2) defined as (0.3G(n=0.9) + 0.7G(1=0.2)). The
sample sizes for G1 and G2 are 250. Figure 3 shows the p.m.f estimates estimated for the mines
data, analysed by Dong and Simonoff [3]. Figure 4 shows the estimated p.m.f from both
estimators of dry spell length data, for season 3 (i.e. Jul - Sep) for the station Woodruff, in Utah.
The sample size in this case was 539. All four figures indicate that both DKE and HT/DS perform
comparably. As both the estimators are similar this is expected. We investigate through Monte
Carlo simulations, the behaviour of these estimates for selected situations. The behaviour of the
weight sequence from both the estimators are also probed. The results are discussed in the

following section.
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3. MONTE CARLO COMPARISONS

We present results from Monte Carlo simulations, comparing our estimator with the HI/DS
estimator using QK. Data sets were generated from situations that may be of interest in our
particular context (e.g., geometric distribution, with a considerable boundary region). We
generated 500 realizations from the two populations G1 and G2. Sample sizes chosen were n =

50,100,200,300,500.

The statistical measures computed to assess the relative performance of DKE and HT/DS

estimators are:
j=nsim  j=k,
1. Average Sum of Squared Errors (ASSE) ( z ( 2 @ij - pi)2 )/ nsim) across all
j=1  i=1
realizations for each sample size.
i=ky
2. Sum of Squared Error (SSE;) ( Z @ij -pj)?) for each realization j = 1,..,nsim

‘=1 > b
j=nsim  i=k,

3. Average Sum of Absolute Error (ASAE) ( Z ( Z abs(ﬁij - pp) )/ nsim) across all
| ji=1 =1
realizations for each sample size.
' j=nsim
4. Cell Root Mean Square Error (CRMSE) { 2 ((ﬁij - pi)z);‘ nsim }0-5 across all
i=1
realizations for each sample size and for each cell i = 1,..ky

5. Fractional Cell Root Mean Square Error : FCRMSE; = CRMSE;/p;
j = nsim
6. Average Cell Bias (CBIAS;) z ( (’ﬁij - pi) / nsim ) across all realizations for each sample
j=1
size and for each eachcelli=1,..ky

7. Fractional Cell Bias: FCBIAS; = CBIAS;/pj
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8. Coefficient of variation of bandwidth Cy = s/h for each sample size. Where s and h are the
standard deviation and mean of the bandwidths obtained for all the nsim realizations.

Note that we chose ky, to be 30 in this case, and p;’s are the true p.m.f ‘s obtained from the known
underlying distributions from the samples were generated, nsim is the number of simulations, in
our case it is 500.

Table 1 shows the ASSE and ASAE for the two estimators for the two populations G1 and
G2 considered. It can be observed from Table 1 and Figures 5 and 6 that the performance of the
two estimatofs over these two measures is quite close. Figures 5 and 6 indicate that the ASSE
appears to decrease with n at rates -1.03 and -0.86 for HT/DS and -0.85 and -0.9 for DKE, for G1
and G2 respectively. These rates are very similar, and are close to the rate n-! as anticipated in Hall
and Titterington's[8] Theorem 2.1. However, the SSE for HT/DS has a larger spread that DKE as
can be seen from Figures 7 and 8 for G1 and G2 respectively for a sample size of 50. The results
were generally similar for other sample sizes.

As mentioned earlier we are interested in the behaviour of these estimators at the boundary
(left boundary) and in the tails. To assess this, CRMSE; and FCRMSE; for different sample sizes
n were estimated. As an illustration we present the estimates of FCRMSE; for sample sizes 50 and
500 for G1 in Figures 9a and 9b respectively. Figures 10a and 10b are corresponding figures for
G2. These figures suggest that DKE performs better than HT/DS in the tail region for all sample
sizes, more so for smaller sample sizes. The results for other sample sizes were intermediate.

From Figures 11 and 12 we see that part of the poorer performance of HI/DS in the tails is
due to higher bias.

The MSE expression of the estimate pj as given by Wang and Van Ryzin [17] is,

kmax kmax kmax kmax kmax

B[, {Bi-pil2l= 2, >, Wijhpyn - 3, {3, W(ijbpj}?n +

i=1 i=1j=1 i=1 j=1
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km ax max

2. (2, WG,jbpj - pj)2 )

i=1 j=1

where p;j is the trut; p.m.f, W(i,j,h) is the weight function, h is the bandwidth and n is the sample
size. For the the two populations considered viz. G1 and G2 we know the true p.m.f. Substituting
this for pj in the above equation, the optimal bandwidth can be determined for various sample
sizes. These bandwidth values are then compared with the corresponding average bandwidths
obtained from the simulations. These along with the coefficient of variance of bandwidth Cy are
summarized in Table 2. It canbe bbserved that Cy, is smaller for DKE for all the sample sizes for
G1 and G2. Note that DKE smooths the Geometric distribution data (G1) more than HT/DS, and
smmoths the mixture data (G2) less than HT/DS. Also the average bandwidths from DKE are close
to the MSE optimal bandwidths. This suggests that the bandwidth from DKE is more stable than
from HT/DS.

The behaviour of HT/DS in these simulations is interesting. There is a tendency to
undersmooth relative to the optimal bandwidth. As a result the boundary bias decreases with n,
while the tail bias may be high. The higher coefficient of variance of the HT/DS bandwidth
suggests a higher degree of adaptation to sample attributes. However, this fails to consistently
provide a lower bias on MSE than DKE.

The need to choose a bandwidth in the boundary region that is different from the interior
has been recognized by several researchers (e.g. Miiller [9]). Generally variation in h across the
range of the data, and especially in the tails is needed. The selection of a “local” bandwidth

considering boundary kernels and tail regions remains an area of research.

Page 12 Tue, Feb 21, 1995



4. OTHER POSSIBLE ESTIMATORS

Miiller [9] shows how one can develop minimum variance kernels and kernels belonging to
different smoothness classes for continuous variates. Extensions of these ideas to the discrete case
is also feasible. Here we outline two such extensions.

A discrete, minimum variance (DMV), second order kernel can be developed as the

solution to:

i+h 2
Minimize Y, w"" (18)
=
Subject to:
i+h
Yw. = (20)
= J
i+h , ‘
tw, =0 21)

where tj==(i-j)/h, i,j,h are integers, and q=max(i-h,1), recognizes whether we are in the boundary
region or the interior.
A smooth, discrete (DSp) kernel of smoothness |t can be defined by solving the problem:
i+h-p | '
Minimize ; (Wj _i_u-wj)z subject to the conditions (19) through (21) above. Solutions to the two

problems defined above can be readily obtained by defining the associated Lagrangian problems

and solving them for the weights wj that define the kernel sequence over the appropriate span of

integers.

The weight sequences resulting for DMV and DS1 (u=1) for selected values of h, and i are

compared with the DQ and HT/DS weight sequences in Table 3. In the interior, the HT/DS, DQ
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and DS1 weight sequences coincide. This is to be expected since they all converge to the quadratic
kernel. The DMV sequence degenerates to uniform weights as expected. An examination of the
weight sequences in the boundary region shows that the DQ sequences stay closer to the DS1
sequences than the HT/DS ones. Thus if a computationally fast approximation to the DS1
sequences was desired in the boundary region, DQ would be preferred. Note that the DMV
sequences in the boundary region are still generally closer to the DS 1 than the HT/DS. |

An interesting aspect of the HT/DS sequence is the adaptation of the weight sequence as h
varies between two integers. We observe that the weight -sequences at the intermediate h value are
not strictly in between the weight sequences at the end points. While this may lead to a high degree
of adaptaﬁility of the HT/DS procedure, it makes it rather difficult to assess its impact on the
estimation procedure. The high coefficient of variation of the bandwidth selected by HI/DS may be
related to the nature of the resulting weight sequence.

The boundary kernels developed by Dong and Simonoff [3] do not correspond to the ones
presented by Miiller [9] for the continuous case. It may be interesting to try the Miiller [9]
boundary kernels, possibly with a floating boundary value, directly with the HT procedure.

Computational considerations have restricted our Monte Carlo investigations thus far to DQ
and HT/DS. The relative utility of DMV and DS may be investigated subsequently. Except in the
boundary region, our limited investigations show that differences between the different kernels
may not be large. Consequently, kernels that are easier to compute are expedient. In this respect the

DQ kernels are to be preferred.

Page 14 Tue, Feb 21, 1995



5. SUMMARY AND CONCLUSIONS

The estimator presented here was motivated by practical considerations. We offer this
work in the hope that it will stimulate interest and theoretical development. We show that the
discrete kernel procedure advocated can give results comparable to those from the HT/DS
procedure. Computational advantages of the DKE procedure and the similarity of its properties to
kernel sequences based on smoothness criteria were demonstrated. The relative stability of the
bandwidth selection procedure and the DQ weight sequence also recommend it as an alternative to
the HT/DS method.

We present only one special case (a quadratic kernel in the interior and in the boundary
region). Clearly other similar higher order kernels can be derived. However, as is typical in the
kernel smoothing literature, bandwidth selection is likely to be a more tenuous issue than kernel
. specification. The LSCV choice of h appears to perform quite satisfactorily for the test cases.

Extensions to the multivariate case are being investigated.
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Table 1

Comparison of ASSE and ASAE
ASSE ASAE

DKE PAR HT/DS DKE PAR HT/DS
Samples generated from G1 (Geometric (1=0.2))
n=>50 0.0058 0.0008 0.0084 0.2032 0.0816 0.2737
n=100 0.0032 - 0.0006 0.0038 0.1558 0.0599 0.1814
n=200 0.0019 0.0003 0.0019 0.1183 0.4250 0.1264
n=300 0.0013 0.0002 0.0012 0.1000 0.0323 0.0987
n=2500 0.0008 0.0000 0.0008 0.0780 0.0226 0.0797
Samples generated from G2 (0.7* Geometric (1t=0.2)+0.3* Geometric (=0.9))
n=50 0.0080 - 0.0081 0.2300 -—- 0.2481
n=100 0.0039 - 0.0038 0.1676 o 0.1638
n=200 0.0021 - 0.0022 0.1261 - 0.1194
n=300 0.0016 --- 0.0016 0.1071 -— 0.0978
n=500 0.0010 -- 0.0011 0.0855 - 0.0785
Note

PAR is the fitted parametric (in this case the fitted Geometric distribution)
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Table 2

Bandwidth statistics
Coefficient of Variation Average Bandwidth Optimal Bandwidth
from MSE criteria

DKE HT/DS DKE HT/DS DKE HT/DS
Sample from Gl
n=>50 0.349 0.442 6.73 5.48 7.00 8.06
n=100 0.305 0.401 6.13 4.97 6.00 8.06
n =200 0.316 0.361 4.96 4.36 5.00 7.14
n =300 0.290 0.314 4.51 4.21 4.00 6.25
n =500 0.275 0.341 4.00 3.47 4.00 5.56
Sample from G2 '
n=50 0.309 0.291 2.844 3.067 ‘ 3.00 4.10
n=100 0.210 0.220 2.280 2.931 2.00 4.03
n =200 0.007 0.213 2.020 2.902 2.00 4.03
n = 300 0.000 0.212 2.000 2.912 2.00 4.03
n = 500 0.000 0.214 2.000 2.844 2.00 4.03
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Table 3
Comparison of weight sequences

h=2 h=2.35 h=3
Interior
DQ 0,.3,4,3,0 - 0,.14,.23,.26,.23,.14,0
HT/DS 0,.3,.4,.3,0 0,.11,.25,.29,.25,.11,0 0,.14,.23,.26,.23,.14,0
DMV 0,.33,.33,.33,0 0,.2,.2,.2,.2,.2,0
DS1 0,.28, 44,280 0,.14,.23,.26,.23,.14,0
ngncim
1= '
DQ 1,0,0 —— .75,.5,-.25,0
HT/DS 0,1?0 0,1.7,-.7,0 0,.88,.12,0
i=2
DQ 0,1,0,0 o 0,.75,.5,-.25,0
HT/DS 0,.63,.37,0 0,.62,.45,-.07,0 0,.5,.4,.1,0
DMV 0,1,0,0 0,.83,.33,-.16,0
DS1 - 0,1,0,0 0,.8,.4,-.2,0
i=3
DQ - 0,.3,4,.3,0,0
HT/DS 0,.28,.35,.28,.08,0 0,.28,.32,.28,.12,0
DMV 0,.4,.3,.2,.1,0
DS1 0,.34,.37,.23,.06,0
Notes: :

iis the point of estimate, on which the kernel is placed, h is the bandwidth.
DQ, DMV and DS1 do not admit non integer bandwidths.
The HT/DS weights correspond to a quadratic kernel, and admits non-integer h.
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Figure 10(b). FCRMSE; from HT/DS and DKE, of samples generated from
0.7*Geometric (1=0.2)+0.3* Geometric (n=0.9) of sample size 500.
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APPENDIX 4C

Seasonality of Precipitation along a Meridian
in the Western U.S

Balaji Rajagopalan and Upmanu Lall
Utah Water Research Laboratory
Utah State University, Logan, UT 84322-8200

Abstract

‘We investigate seasonality of daily precipitation along a meridian in the Western U.S. using-
a nonparametric technique. The occurrence of daily precipitation is treated as a nonhomogeneous
Poisson process and the time varying intensity function is estimated for every calendar day using a
kernel estimator. The technique is fully data adaptive. We apply this technique to selected long
record stations along a meridional transect spanning from Tuscon, AZ to Priest River ID.
Differences in the seasonality of precipitation occurrence and magnitude are revealed as a function
of latitude and topographic factors. A monotonic trend in the seasonality of precipitation over the

length of record is also observed.



1. Introduction

Seasonaﬁty in hydroclimatic variables is usually related to the unequal heating of the earth's
surface over the year, particularly as one moves to higher latitudes. Precipitation is an important
hydrologic variable since it is a primary input into surface hydrologic models. The timing and
duration of the “seasons” of high precipitation at a site is important since they indicate the form
(rain or snow) of precipitation as well as the nature of the input “signal” for the surface hydrologic
system.

Here we were interested in dynamically visualizing how the seasonality of rainfall varies by
latitude along a transect in the western U.S. (approx. longitude 112° W). Long record precipitation
stations which had essentially complete records were selected from latitude 48° 17" N to latitude
32° 15" N . We were interested in daily precipitation because of its use for agriculture, crop
management and forest management. The attributes of interest considered are precipitation
‘magnitude’ and ‘relative frequency of occurrence’.

Stochastic precipitation models as well as other hydrologic models often deal with the
nonstationarity in precipitation and other climatic inputs by dividing the year into a number of
seasons and then fitting model parameters independently for each season. The leading terms (one
or two) of a Fourier series representation of the precipitation data are commonly used to identify
seasonality, for time varying parameter description and for delineating seasons.

An attractive alternative to Fourier series methods is provided in this paper. We focus first
on the rate of occurrence of precipitation as a function of calendar date (1 to 366) within the year. A
kernel estimator is used to estimate the “rate” of rainfall occurrence of precipitation by calendar
day, by “smoothing” a binary (1 or 0) indicator sequence that represents precipitation occurrence
on a given day in the historical record. This rate is interpretable as the time varying rate parameter
of a nonhomogeneous Poisson process. Variation in precipitation magnitude over a 90 day moving

window is also investigated.
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An interesting trend in seasonality is exhibited by the stations we analyzed. There appears
to be a consistent shift in the seasons identified on the basis of precipitation rate. The calendar dates
associated with the highest and the lowest precipitation rates for a given year appear to move

forward each year of the record.

2. Methodology

A Precipitation is an intermittent process. For understanding climatic variations it is often
useful to consider adaptive representations that allow a smooth, continuous time interpretation of
precipitation. The Poisson process has been used to describe rainfall occurrence as a point process
(Waymire and Gupta 1981 a; Cox and Isham, 1980). In the stationary point process, the number
of events (e.g., the events are occurrence of wet days) n(T) occurring in a duration T is a random

variable with a Poisson distribution with mean AT:
p((T) =k) = ATk e ATkl k=0,1,2 (1)

where A is called the rate or intensity parameter. Often, it is hard to distinguish beiween changing
intensity of the process and event clustering. This situation can be addressed by explicitly allowing
changing event intensity in the model and consequently, modeling the daily precipitation as a
nonhomogeneous Poisson process (same as Equation 1 but with a time varying rate parameter A,
i.e. A(1), T=1,..,366) to capture the changing precipitation pattern over the year. Our thesis here
is that this time varying rate parameter is a useful indicator of precipitation seasonality at a site.
Kernel intensity estimators (see Diggle, 1985; Solow, 1991) can be used to estimate A(T)
from the record, through an optimal, weighted moving average of the rate of rainfall occurrence

over time. To form such an estimate, we need to define an appropriate weight function, a span over

Page 3 Tue, Feb 21, 1995



which to average and a criteria for choosing the weight function and span in an optimal way. Our
presentation here is informal and is restricted to a description of the estimation process used.

Daily precipitation data from about a dozen sites spread along Arizona, Utah and Idaho
were used to estimate the intensity parameter for each day of the historical record. Table 1

summarizes the site and data information.

2.1 Estimation Procedure
We considered the estimation of A(7), for each calendar day 1: (1,2,..,366), for each year of
‘record y. The average across years of the estimates of A(T) provides a measure of the typical
seasonality at the site.

The kernel estimator used for ky(r), the rate on calendar day 7, in year y is,

— ny .
Ay =13 KCEDY) @
hy i=1 hy

In equation 2, T (1,2,..,366) is the calendar day on which the estimate is required, Ti,y is
the index of a calendar day on which there was rain in year y; K(.) is a kernel function which is |
taken to be a positive function that integrates to unity, is symmetric and has finite variance; hy isa
bandwidth or "scale" parameter (for year y) of the kernel function, that controls the smoothness of
}:;(r).

The estimator in Equation (2) is very similar to a kernel density estimator (see Silverman,
1986; Scott, 1992). The choice of a kernel function is considered secondary (Silverman, 1986;

Scott, 1992) to the choice of the bandwidth in terms of the Mean Square Error (MSE) of the

resulting estimate A,(t). Different kernels can be made equivalent in this sense through an
appropriate choice of the bandwidth. Diggle and Marron (1988) show the equivalence between

density and intensity (or rate) estimation and show that the same bandwidth is optimal in both
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cases under a mean square error criterion. The “plug in” or recursive bandwidth estimator due to
Sheather and Jones (1991), has worked the best in our tests for kernel density estimation
(Rajagopalan et al., 1995). This procedure strives to minimize the average mean integrated square
error in density estimation through a data driven estimate of the pointwise bias and variance of the
estimate. We used this procedure to select the bandwidth hy.
- For this study we used the Epanechnikov kernel, given as:

T-T;
h}’

K(x) = %(1«2)2 Ix € 1 wherex = (3)

Periodic boundaries are used for the estimation process by (a) recognizing that dates from
the end of one year can be within a bandwidth hy of dates in the beginning of the next year, and (b)
using data from year (y-1) or (y+1) for estimates on days within such a bandwidth in year y.

The intensity parameter of the nonhomogeneous Poisson process is estimatéd for each
calendar day (T = 1,..,366) of each year (1,..,y) in the historical record using the estimator in
Equation (2). Weighted average precipitation for each calendar day of each year in the historical

record is also estimated using the Epanechnikov weight function with a bandwidth of 90 days.

4. Results

The average rate across years and the average weighted precipitation for each calendar day,
estimated as described above is plotted for all the twelve stations. The x-axis on all the figures is
the calendar day (i.e. 1 to 366), where 1 corresponds to January 1 and 366 to December 31
respectively. In all these figures the solid line denotes the average daily rate, and the dotted lines
indicate the average weighted precipitation. The following observations are offered from the

figures.
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1. The average daily rate and the average weighted precipitation fluctuate in about the same way at
all the stations (see Figures 1a through 11). Thus, the use of the rate to describe seasonality
seems to be a useful notion.

2. Stations in the north of the meridional transect (namely, SNP, PRR, LAK, LOG, SIL,SNC,
HEB and SPF ) have similar shape of the rate and precipitation curves as can be seen from
Figures 1a,1b,1c,1d,1f,1g,1h and li. These stations seem to have higher than average values
of the rate function around the first 70 to 100 days and the last 70 to 100 days of the year, with
the exact number of days varying from station to- station. A similar trend is seen in the
precipitation.

3. The curves of rate and precipitation are similar for stations near the southern end of the
meridional transect (namely, ALT, MIA and TUS) as seen from Figures 1j,1k,11. These
stations appear to have high rates during the middle 100 days of the year and increased rates
during the first and last 30 to 60 days of the year. This is prominent at ALT, and is subdued in
MIA and TUS. The "wet" seasons in the north appear to correspond to "dry" seasons in the
South and vice versa. This observation corresponds to the largely zonal flow driven
winter/spring precipitation in the north, as opposed to the largely convective summer
pfecipitation in the South (Ropelewski and Halpert (1986,1987)).

4. Station WOD exhibits an interesting pattern (see Figure le). The rate appears to be high during
day 70 to 130 of the year (i.e., in spring) and is low the rest of the time. WOD lies in a rain
shadow region with respect to the large scale atmospheric flow and hence gets very little
precipitation during the general wet period and gets all its precipitation during the spring time
due to local orographic/convective effects. There are two periods with higher than average daily
precipitation at this station. One that corresponds to the high rate (day 70 through 130) and
another during day 190 to 290. Apparently this station can receive high convective rainfall in

the summer/fall even though the number of rainy days is low then.
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Seasonality trends over this century

Schneider (1995) reports that D. J. Thomson found significant changes in the timing of
seasons since around 1940 in the Northern hemisphere by analyzing the 1651-1991 Central
England temperature record. The seasonality of temperature in the Northern Hemisphere is
determined by radiative heating which peaks on June 22, and transport of heat from other parts of
the globe. The peak temperature occurs later in the year as one moves to higher latitudes in the
Northern hemisphere reflecting the delay in transport of heat. Thomson's thesis is that in an
atmosphere enriched by Carbon Dioxide, heating and transport of heat are more efficient, and the
advance in the seasons in the Northern hemisphere is evidence of global warming.

Consequently, it was of interest to examine changes in the seasonality of precipitation along
our meridional transect, as reflected by the estimated rate and average weighted precipitation
amounts. We estimate the average rate for the periods before and after 1950 ( a time approximately
in the middle of the data sets) at four stations with long records, which are PRP, SAN, MIA and
TUS, and plot them in Figures 2a,2b, 2¢ and 2d respectively. In these four figures the thick line is
the average rate from the entire historical record,‘the dotted line is the average rate from the
historical record before 1950 and the dashed line is the average rate from the historical record after
1950. The average rate curves for the periods before and after 1950 are shifted from the average
rate curve estimated from the entire historical record. It can be seen that the average rate after 1950
is shifted to the left (i.e., the peaks and valleys are shifted left) relative to the average rate before
1950. Similar observations can be seen from the above analysis on the average weighted
precipitation amounts, in Figures 3a,3b,3¢ and 3d at the four stations PRN,SAN,MIA and TUS
respectively.

On observing these patterns in seasonality, we decided to anaiyze the records to see how
this shift was occurring over time, i.e., is it a sudden or continuous trend. The calendar day in each
year on which the estimated rate was maximum and the date on which it was a minimum were

selected. The maximum (minimum) rate at PRR/TUS occur near the end (or beginning) of the
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calendar year. Thus a change in seasonality could move this date across calendar year boundaries.
It is easier to analyze the transition in the date of the maximum rate at PRR and the minimum rate at
TUS if we change the year boundaries away from these dates. Consequently, the date associated
with maximum rate at PRR and the minimum rate at TUS is computed on a calendar year that runs
from July 1 to June 30, rather than Jan. 1 to December 31. The dates for the minimum rate at PRR
and the maximum rate at TUS are computed using the standard calendar.

These dates are plotted for two stations PRR and TUS (the northern and the southern
extremes of our data set), in Figures 4a and 4b for maximum rate and Figures 5a and 5b for
minimum rates respectively. The line in these figures is a nonparametric smooth fitted by LOWESS
(Cleveland, 1979). One can see that the date for both the maximum and minimum rates has a
decreasing trend with year. The nonparametric Mann-Kendall test (Gilbert (1987)) for monotonic
trend showed that these trends were significant (p-values in all cases were of the order of e~10),
Robust estimates of the linear trend, the Sen slopes (see Gilbert (1987)) range from -0.33 to -1
days per year. We performed the above analysis with the average weighted precipitation and a
similar behaviour was observed. Results are not presented for brevity. It is rather curious that the
march of seasons as measured by the precipitation rate and also the average weighted precipitation

is advancing at these sites at roughly a constant rate over the whole record.

5. Closure

The nonparametric methods presented here were shown to be useful for identifying
seasonal variations in precipitation occurrence as a function of latitude and also for variations in
seasonality across years. For the data sets analyzed, we remarkable differences were seen in the
timing and duration of the precipitation seasons along the meridional transect selected west of the
Rockies. An interesting trend in the seasonality across the sites was also identified. If this trend is

related to global warming it has important implications for the form of precipitation in these areas,
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and also for crop water requirements in the growing season. Further investigation of such trends

and their relationship to atmospheric circulation is warranted.
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TABLE 1 Data Sets Analyzed

Elevation
Latitude Longitude (ft.aboveMSL] Record Length
Priest River, Idaho (PRR) 487 21'N 116" 50 W 2380 1911-1992
Sandpoint, Idaho [SNP] 48" 17N 116°34' W 2100 1910-1992
Laketown, Utah [LAK] 41°49'N 111° 19W 5980 1948-1992
Logan, Utah {L.LOG] 41°45'N 1117 48' W 4790 1928-1992
Woodruff, Utah [WOD] 41°32'N 1117 09 W . 6320 1948-1992
Silverlake, Utah [SIL] 40° 3¢' N 135w ‘ 8740 1948-1992
Snake Creek, Utah {SNC] 40°33'N 1130w 6010 1928-1992
Heber, Utah [HEB] 40° 30' N "2 W 5630 1928-1992
Spanish Fork, Utah [SPF] 40°05'N 111°36' W 4720 1932-1992
Alton, Utah [ALT] 37°26'N 112° 29 W 7040 1929-1992
Miami, Arizona [MIA] 337 24N 110° 53 W 3560 1914-1992
Tucson, Arizona [TUS] 32° IS'N 1O 57w 2440 1901-1992

Note: All data sets were obtained from Earth Info, CD-ROM
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Figure 1. Average daily rate (solid line) and average weighted precipitation (dotted
line) for each calendar day, at (a) at Priest River, ID, (b) at SandPoint, ID,
(c) Laketown, UT, (d) Logan, UT, (e) Woodruff, UT, (f) Silverlake, UT, (g)

Snake Creek, UT, (h) Heber, UT, (i) Spanishfork, UT, (j) Alton, UT, (k)
Miami, AZ and (I) Tucson, AZ.
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APPENDIX 4D

A Nonhomogeneous Markov Model for Daily
Precipitation Simulation

Balaji Rajagopalan, Upmanu Lall and David G. Tarboton

Utah Water Research Laboratory
Utah State University
Logan, Utah, UT-84322-8200

ABSTRACT

We present a one step nonhomogeneous Markov model for describing daily precipitation at
a site. Daily transitions between wet and dry states are considered. The one s‘tep, 2x2 transition
probability matrix is presumed to vary smoothly day by day over the year. The daily transition
probability matrices are estimated nonpérametrically. A kernel estimator is used to estimate the
transition probabilities through a weighted average of transition counts ovér a symmetric time
interval centered at the day of interest. The precipitation amounts on each wet day are simulated
from the kernel probability density estimated from all wet days that fall within a time interval
centered on the calendar day of interest over all the years of available historical observations. The
model is completely data driven. An application to data from Utah is presented. Wet and dry spell
attributes (specifically the historical and simulated probability mass. functions (p.m.fs) of wet and
dry spell length) appear to be reproduced in our Monte Carlo simulations. Precipitation amount

statistics are also well reproduced.
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1. INTRODUCTION

Markov chains (Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975; Smith and
Schreiber, 1973) have been a pdpular method for modeling daily precipitation occurrence.
Typically a two state (wet or dry), one step model is used, and the state transition probabilities‘
(€.8.rs transitiofl from wet a day to a wet day, wet day to a dry day) are estimated from the data.
One problem with such a description is that the transition probabilities may vary over the year, i.e.,
the process of precipitation occurrence is nonstationary. .

Two approaches are commonly used to address tﬁis problem. In the first approach, the year
is divided into periods (or seasons) and the transition probabilities are estimated separately for each
period. There is an implicit assumption that the occurrence process is stationary over the period.
This assumption may not be tenable. The second approach is to consider essentially a
nonhomogeneous Markov process by allowing the transition probabilities to vary sytematically
over the year, and to model such a variation through a Fourier series expansion (Feyerherm and
Bark (1965), Woolhiser et al. (1973) and Woolhiser and Pegram (1979)). This can bé an effective
approach where adequate data is available, and the seasonality in the precipitation process can be
captured by a few Fourier series terms. Our nonparametric analyses (Rajagopalan and Lall (1995))
of the seasonality of precipitation for stations along a meridional transect in the Western United
States, suggests that sometimes the number of Fourier series terms needed may be large relative to
the amount of data available.

In this paper, a nonhomogeneous Markov (NM) model is presented that uses kernel
methods to estimate a nonhomogeneous transition probability matrix, and to estimate a
corresponding nonstationary probability density function (p.d.f) of daily precipitation amount.
Kernel methods are local, weighted averages of the target function (relative frequency of

occurrence in this case). Since they are capable of approximating a wide variety of target functions
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with asymptotically vanishing error, and use only data from a "small" neighborhood of the point of
estimate, they are considered nonparametric. Fourier series methods are shown to be a subset of
kernel methods by Eubank (1988, secs. 3.4 and 4.1). A review of hydrologic applications of
nonparametric function estimation methods is provided by Lall (1995).

A brief description of the Markov chain and its terminology is first presented as a
background to motivate our formulation. The general structure of the NM model proposed is next
outlined with the nonparametric estimators for the transition probabilities. The simulation
procedure is then outlined. Results from an application of the model to a precipitation data from

Utah follow. Musings on the results and discussion on limitations of the approach conclude the

paper.

2. BACKGROUND

The basic assumption in a two state Markov Chain model is that the present state (wet or
dry) depends only on the immediate past. The transition probabilities for transitions (i.e., WW,
WD, DW, DD) between the two states (W or D) are estimated directly from the data through a
counting process. Two elements of the transition probability matrix are the probability of a dry day
following a wet day, Py = a1, and the probability of a wet day following a dry day, Ppyw = ap.
The other probabilities, probability of a wet day following a wet day, Pyyw and the probability of
a dry day following a dry day, Ppp are (1 - aj) and (1 - ap) respectively.

Seasonal variations in the transition probabilities can be accounted for by expressing the
changing transition probabilities through a Fourier series (Woolhiser and Pegram, 1979; Roldan

and Woolhiser, 1982). As an illustration, the transition probability P(WD) can be expressed as:

. |
Pap(®) =Pwp+ O, cisin(2mtk/365 +0y); t =12,..,365 (1
k=1
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where m = the maximum number of harmonics required to describe the seasonal variability of the
transition probability, Py is the annual mean value of the parameter, cy is the amplitude, and Bk
is the phase angle in radians for the kth harmonic.

The means, amplitudes, and phase angics are estimated by numerical optimization of the
log likelihood function, as described by Woolhiser and Pegram (1979) and Roldan and Woolhiser
(1982). Fourier series representations of parameters of a first-order Markov chain for precipitation
have been used (among others) by Feyerherm and Bark (1965) who used least squares techniques
for parameter estimation and by Stern and Coe (1984) wﬁo formulated the estimation problem as a
generalized linear model to obtain maximum likelihood estimators.

The degree of dependence in time is limited by the order (i.e., the number of past days the
present state is presumed to depend on) of the Markov chain. Feyerharm and Bark (1967) and
Chin (1977) suggest that the order may need to be seasonally variable as well. Lack of parsimony
is a drawback of MC models as the order is increased. A number of researchers (Hopkins and
Robillard (1964), Haan et al (1976), Srikanthan and McMahon (1983), Guzman and Torrez
(1985)) have also stressed the need for multistate MC models that consider the dependence
between transition probabilities and rainfall amount. In this paper, we shall consider only a two

state, first order Markov Chain. Extensions to other situations follow in the same spirit.

3. MODEL FORMULATION

The NM model that we present allows the one step transition probability matrix to change
over each day thus capturing the day to day variation in the occurrence process in a natural manner.
The daily transition probability matrices are estimated using a discrete kernel estimator, which we
describe in the following section. Daily precipitation occurrence sequences are then simulated using

the transition probability matrices. To complete the model, precipitation amounts on each wet day
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are simulated from the nonparametric probability density estimated from all wet days that fa]]
within a time interval or bandwidth centered on the calendar day of interest over all the years of

available historical record. The model is completely data driven.

3.1 Transition Probabilities and their Estimation

The precipitation occurrence process is shown in figure 1. From the daily precipitation
record we can obtain four types of data, (for illustration refer to figure 1) which are, (1) the day
indices tw 1+ twosntwyyy Of OW wet days; (2) the day indices tq;, tdy--td, 4 of nd dry days; (3)
the day indices tyq1, twdyrotwdywg ©F the nwd days on which a transition occurs from wet to
dry, meaning days twd]» twdy, - are wet and days twd;+1, twdy+ 1 ... are dry; (4) the day
indices tdw1 tdwortdwndw of the ndw days on which a transition occurs from dry to wet,
meaning days tdw s tdwoy, - € dry and days tdwy+1l, tdwyt 1 ... are wet. A day index refers
to a number between 1 to 366, representing the calendar day of the observation. From these we
estimate the transition probabilities Py,4(t) (probability of transition from a wet day on calendar day
t to a dry day on calendar day t+1), Pqw(t) (probability of transition from a dry déy on calendar
day t to a wet day on calendar day t+1). The other two transition probabilities (namely wa(t) and
P4q(t)) can be estimated directly from the relations Pywq(t) + Pww(t) = 1 and Pgy(t) + Pgq(t) = 1.
The transition probabilities for calendar day t are estimated from the data using discrete
nonparametric kernel estimators.

For a traditional Markov chain the transition probabilities are estimated simply as the ratio
of the number of transitions in the historical record to the number of wet or dry days in the
historical record, as appropriate. Here,we try to localize such estimates about the calendar day of

interest using kernel estimators. The general idea is that the events (i.e., a wet or dry day, or a state

transition) occurring near the calendar day of interest should be given more weightage while the
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ones further away should be given a lower weightage. The resulting kernel estimators for the

transition probabilities Pywd(t) and Pgy(t) are given as:

nwd
D, K
5 .. i=1 wd
Pya() = EL @)

W

Y, K

i=1 Byq

ndw

t - tdW;
) § K5
Paw() ==— 3)

nd
) K(th'dtdo

i=1

where ny,q is the number of transitions in the historical record from wet day to dry day, Ndw 1S
the number of transitions in the historical record from dry day to wet day, nq is the number of dry
days in the historical record, ny, is the number of wet days in the historical record, K(.) is the
kernel function (or weight function) and hy ) is a kernel bandwidth, t is the calendar day of interest
and the t( y’s have the definitions described earlier. Note that the estimates on any calendar day t
are obtained by using the information from days in the range [t - h ), t + h¢)l. Note that the
definition of calendar dates is periodic, i.e. day 365 and day 1 are recognized as 1 day apart for a
non-leap year. The contribution to the estimate of an event that lies within this range is determined
by the kernel or weight function K(.), that is described below.

Since we have a discrete situation (i.e. each day being discrete} we use the discrete kernel

developed by Rajagopalan and Lall (1995) as:

K(x) =—30_(1 - x2)  for Ix! <1 (4)
(1-4h%)
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where x =(t-t )/ ), measures how far an event t y, that lies within a bandwidth h( ) of the day t,
is from t; and h(_) is an integer.

The kernel in (3) was derived from the consideration that the sum of all weights ascribed to

' 1
events that lie within a bandwidth h(‘) of tsumto 1,ie., X K(x)=1; that the weights be
x=-1

symmetric on either side of t, i.e. i xK(x) = 0; that each weight be positive; and the resulting
estimate of probability have mirﬁmu:inean square error.

The estimators in equations 2 and 3 are fully defined once the respective bandwidths are
specified. We choose the bandwidth using the Least Squércd Cross Validation (LSCV) procedure
(Scott, 1992, p. 225), where the bandwidth is chosen that minimizes a LSCV function which is

given as

LSCV(h) =

= B

n ”~~
2 - Py))? 5)
i=1

where ’ls_ti(ti) is the estimate of the transition probability (ﬁwd or ﬁdw) on day t; dropping the
information on day tj, n is the number of observations (ndy Or nyq). Here we assume a prior
probability of transition to be 1 on the days on which transitions have occurred hence the 1 in the
equation 5. The bandwidth is searched from 1 to 182 (length of half year). Once the transition
probabilities are estimated for each day in the historical record the simulation of the precipitation

occurrence for each day using the transition probability matrix of the previous day is possible.

3.2 Precipitation amount generation
Precipitation amounts for the wet days are generated from a kernel probability density

estimated from all wet days that fall within a time interval or bandwidth centered on the calendar
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day of interest over all the years of historical record. This amounts to two steps (1) choosing the
time interval or bandwidth and (2) generating from the kernel estimated p.d.f.

An appropriate bandwidth for localizing the estimate of the probability density of
precipitation amount may be obtained by determining the bandwidth appropriate for estimating the
probability that a day is wet. If the probability of daﬂy precipitation is low, the precipitation data
will be sparse, and the bandwidth needed for stabilizing the variance of the estimated probability
distribution of precipitation will be large. Conversely, as the probability of daily precipitation is
high, a large number of days with precipitation will occur and the bandwidth needed to localize the
estimate can be smaller.

Consequently, we first consider the smoothing of the proportion of wet days (p; = n¢/NT,
n¢ is the number of times calender day t was wet; NT is the total number of calendar day t in the
historical record) on each calendar day t = 1,2,..,366. These raw proportions are smoothed using

the discrete kernel (DK) estimator of Rajagopalan and Lall (1995) which in this case is:

. 366 t—j
bt = 2, K pj 6)

where K(.) is the discrete kernel as defined by equation 3, and hy, is the bandwidth that we are
interested in. The béndwidth hp can be obtained using the LSCV procedure similar to equation (5)

as given by Rajagopalan and Lall (1995) as:

366 366 .
LSCV(hp) = X, Bt)? - 22, Bt Pt 7
t=1

t=]

where, DP_¢ is the estimate of the calendar day t, by dropping the information on that day.
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Once we estimate the time interval hy, the next step is to pick the precipitation amounts on

all the wet days that fall within the time interval hy from the day of interest in all the years of the
historical record. Let us say that the precipitation amounts so picked from the historical records are
yl,yz,..,ynp and t1,t2,.tnp are the corresponding calendar day index. The task now is to
generate precipitation amount for the calendar day t, which is a wet day. This can be accomplished
by fitting a conditional p.d.f f(ylt) (see equation 10) and then simulating from it. This step is
carried out for each wet day that is simulated. Before 'describing the simulation procedure we

introduce a kernel density estimator for continuous variables which is given as:

fp) =3 Kc<—-—l) 8
y hy ) ®)
where Kq(.) is a univariate, continuous kernel, and hy is the bandwidth. Here we use the

Epanechnikov kernel given by :

K (x) =0.75(1.-x2) forlxl<1 ()

= 0. otherwise

where x = Zé—}—’l For a detailed exposition of kernel density estimation for continuous variables
y

and issues relating to bandwidth selection we refer the reader to Silverman, (1986), Scott (1992),
and for kernel density estimation methods with specific application to precipitation modeling we
refer to Lall et al. (1995) and Rajagopalan et al. (1995).

A logarithmic transform of the precipitation data prior to density estimation is often
considered. Such a transformation is also attractive in the kernel density estimation (k.d.e)

context. Since it can provide an automatic degree of adaptability of the bandwidth (in real space).
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This alleviates the need to choose variable bandwidths with heavily skewed data, and also
alleviates problems that the k.d.e. has with p.d.f. estimates near the boundary (e.g.,., the origin)

of the sample space. The resulting k.d.e. can be written as:

_1 K (108() - log(y;)
(Y) nplg - (_W_L) (10)

where hy v is the bandwidth of the log transformed data. Thxs is chosen usmg a recursive approach
due to Sheather and Jones (1991) (SJ) to minimize the Mean Integrated Square Error (MISE) and
recommended by Rajagopalan et al. (1995) typically for precipitation data.

The two step procedure discusséd above can be more formally considered through the

conditional p.d.f. /f(ylt), defined using a product kernel representation as:

f(ylt) - 2 log(Y) iog(yx))K(t- tr) / 2 K(t tl (11)
=1 i=1

Equation 11, states that the conditional probability density of a rainfall amount y on
calendar day t is obtained by considering a window of width hp centered at t, wéighting the
precipitation amounts on wet days that fall within this window using the kernel K(.), and then
forming a density estimate by further weighting these amounts with the kernel K.(.). Strictly

speaking, the bandwidths h; and hy - should be chosen by optimizing a criteria relevant to the

P
conditional density. The description of our procedure given earlier shows that we are essentially
choosing these bandwidths independently. McLachlan (1992, p. 306-308), discusses the
simultaneous selection of bandwidths in each coordinate, versus the use of the optimal univariate

bandwidths in each direction. It is not clear that the additional effort of simultaneous selection of

the two bandwidths is justified. Consequently, we choose the bandwidths hy y and hp by the
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methods described for the univariate case. Rajagopalan et al (1995) show that bandwidths selected
in this way are often satisfactory. For simulation from the kernel estimated p.d.f. (such as
equation (11)) it is not necessary to explicitly estimate the density ?(y|t). The estimation of the

bandwidths hy 'y and hy and subsequent perturbation of the historical data is sufficient.

3.3 Simulation Procedure
The simulation procedure from the NM model can be described in the following steps.

1. From the historical precipitation sequence evaluate the transition probabilities (Pyd(t), Py (1),
Paw(t) and Py4q4(t)) for each calendar day t using the estimators described in section 3.1.
Similarly evaluate the probability density function for precipitation amount on day t using the
procedure described in section 3.2.

2. Start the simulation with a wet or dry day (deciding by generating a uniform random number U
in [0,1], if U £ 0.5 then wet else dry).

3. The precipitation state for the next day is simulated from the transition probability matrix for»the
current day (as estimated in step 1).

4. Precipitation amounts on wet days are generated following the process illustrated in figure 2,
that is described below: |
(i) Pick all the wet day precipitation amounts (e.g.,., ¥ 1,yz,..,ynp) from all the years in the
historical record that fall within the window hp, centered on the corresponding calender day of
interest and also the corresponding calendar day indices t],t2,...tnp-

(i) For the calendar day of interest, pick a historical wet day to perturb using the bandwidth hp
and the kernel K(x) to specify the resampling metric. Recall that the kernel function describes
the weight given to each calendar day that lies within hp of calendar day t, that depend on the
"distance” between the two dates relative to the bandwidth hp, and the kernel function given in

equation (4). Let the weights associated with each of np wet days that are thus identified be
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W], Wt2,.., Winp. Now generate a random integer j between 1 and np from a probability metric
given by these weights.
(iv) The simulated precipitation amount is y* = exp(log(yj)-i-UhLy) where Y is the precipitation
on the historical day point picked to be perturbed. The random variate U is generated from the
probability density corresponding to the kernel function K.(.). As mentioned earlier, we have
used the Epanechnikov kernel in this study and simulation from this kernel is easily
accomplished using the two step procedure described in Silverman (1986, p. 143)

5. The process (steps 3 and 4) is repeated day by day until the desired length of record is

generated.

4. MODEL APPLICATION

The model described was applied to daily rainfall data from Salt Lake City in Utah. Thirty
years of daily weather data was available from the period 1961-1991. Salt Lake City is at 40946’ N
latitude, 1110 58’ W longitude and at an elevation of 1288 m. Most of the precipitation comes in
the form of winter snow. Rainfall occurs mainly in Spring, with some in Fall.

We shall first list some measures of performance that were used to compare the historical
record and the model simulated record, and then outline the experimental design. The aim here is to
capture the frequency structure of the events (i.e. the underlying p.d.f) which then amounts to the
reproduction of all the statistics. By events we mean the wet spell lengths, dry spell lengths and the
wet day precipitation. The wet and dry spell lengths are defined as the successive wet or dry days.
Clearly the wet spell lengths and dry spell lengths are defined through the set of integers greater
than 1. We look at the model performance both at the seasonal scale and the annual scale. For the
seasonal scale comparison we have the year divided into four seasons : Winter or Season 1 (Jan -
Mar), Spring or Season 2 (Apr - Jun), Summer or Season 3 (Jul - Sep), and Fall or Season 4 (Oct
- Dec). .
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4.1 Performance measures

1.

w

N o w A

Probability mass function of wet spell length, dry spell length and probability density function

of wet day precipitation in each season and annual.

. Mean of wet spell length, dry spell length and wet day precipitation in each season and annual.

Standard deviation of wet spell length, dry spell length and wet day precipitation in each season

and annual.

. Length of longest wet spell and dry spell in each season and annual.

Maximum wet day precipitation in each season and annual.

Percentage of yearly precipitation in each season and annual,

. Fraction of wet and dry days in each season annual.

4.2 Experiment design

Our purpose here is to test the utility of the NM model. The main steps involved in this are:

1.

Thirty sets of synthetic records of thirty years each (i.e. the historical record length) are
simulated using the NM model.

The staﬁstics of interest are computed for each simulated record, for each season, and are
compared to statistics of the historical record using boxplots. The p.m.£f.'s of wet and dry spell
lengths are estimated using the Discrete Kernel estimator of Rajagopalan and Lall (1995) (same
as the estimator in equation (6)) and the p.d.fs of the wet day precipitation is estimated using
the estimator in equation (10). The statistics listed in section 4.1 are computed for the simulated

record and compared with those of the historical record.
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5. RESULTS

In this section we present comparative results (using the performance measures listed in
section 4.1) of the NM model for the Salt Lake City data. The p.m.fs/p.d.fs of the simulated
records are compared with those for the historical record using boxplots while other statistics are
summarized in Tables 1,2 and 3. A box in the boxplots (e.g.,. Figure 3) indicates the interquartile
range of the statistic computed from thirty simulations, the line in the middle of the box indicates
the median simulated value. The solid lines correspond to the statistic of the historical record. The
boxplots show the range of variation in the statistics ﬁfom the simulations and élso show the
capability of the simulations to reproduce historical statistics. The plots of the p.d.f.'s are truncated
to show a common range across seasons and to highlight differences near the origin (mode).

Figure 3 shows the boxplots of kernel estimated p.d.f.'s of simulated data of wet day
precipitation and the historical data. It can be seen that the historical p.d.f.'s are very well
reproduced by the simulations in all the four seasons. The other statistics are also seen to be well
reproduced by the model for all the seasons and also annual, as can be noticed from table 1.

Boxplots of kernel estimated p.m.f.'s of simulated data of wet spell length are found to
enclose the p.m.f of the historical data of wet spell length for all the four seasons in figure 4 and
for the annual in figure 5. The other statistics are also preserved quite well by the simulations, as
seen from table 2. Good performance of the model in reproducing the dry spell statistics can be
seen from figures 6 and 7 ﬁnd also from table 3. The coefficient of skew, and the coefficient of
variation, the 25% quantile and the 75% quantile were also preserved for all the three variables, but
are not shown here.

The extreme statistics (e.g.,. longest spell length or maximum wet day precipitation) exhibit
a high degree of variability in the simulations (refer tables 1,2 and 3) and an asymmetric sampling

distribution, as one would expect.

Page 14 Tue, Feb 21, 1995



Note that none of the statistics that we have listed in section 4.1 are explicitly or implicitly
considered in the model. Hence the good reproduction of p.d.f.'s/p.m.f.'s of the three variables, is

quite heartening.

6. SUMMARY AND CONCLUSIONS

A nonhomogeneous Markov model for simulating daily precipitation is presented in this
paper. The traditionai Markov chain model is extended to consider the a smooth variation in the
transition probabilities from day to day, thus attcmptihg to capture the nonstationarity in the
precipitation occurrence process. The 2x2 daily transition probability matrix is estimated
nonparametrically. The primary intended use of the model is as a simulator that is faithful td the
historical data sequence, obviating the need to divide the year into seasons and subsequently fitting
the Markov chain parameters separately for each season. Simulations from the model are shown to
preserve the frequency structure ( p.d.f/p.m.f) of the wet spell length, dry spell length and wet day
precipitation at both the seasonal and annual time scales.

In many cases, the Fourier series approach to addressing seasonal variation in Markov
Chain parameters may be just as effective. Recall that the Fourier series approach can be shown to
be a subset of the kernel approach with a specific kernel choice. The kernel approach presented
here is attractive because it is relatively parsimonious, locally adaptive, and extends quite naturally
to localizing the probability density estimation for precipitation amount as well. Extensions to
higher order chains or those with more states follow directly. One needé to define the appropriate

events as was done here and go through the solution of the corresponding smoothing problem.
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Table 1

Statistics of wet day precipitation for Salt Lake City, UT, 1961-1991
from historical precipitation record and averaged over 30 simulated precipitation records

mean wet std. dev. fraction of maximurm
day ppt. wet day ppt. yearly ppt.  wet day ppt.
(inches) (inches) (inches)
Season 1
25% quantile 0.16 0.19 0.23 1.26
Median 0.16 0.20 0.23 1.36
75% quantile 0.17 0.21 0.24 1.59
historical 0.15 0.17 0.21 0.92
Season 2 B
25% quantile 0.19 0.24 0.26 1.74
Median 0.19 0.25 027 1.86
75% quantile 0.20 0.26 0.28 2.18
historical 0.20 0.24 0.28 1.62
Season 3
25% quantile 0.18 0.27 0.24 1.94
Median 0.18 0.28 0.26 2.3
75% quantile 0.19 0.30 0.26 2.87
historical 0.18 0.29 0.26 2.28
Season 4 ‘
25% quantile 0.16 0.19 0.24 1.37
Median 0.17 0.21 0.24 1.7
75% quantile 0.18 0.23 0.25 2.16
historical 0.17 0.19 0.25 1.23
Annual ¢
25% quantile 0.18 0.24 2.35
Median 0.18 0.25 2.55
75% quantile 0.19 0.25 345
historical 0.17 0.22 2.30
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Statistics of wet spell length for Salt Lake City, UT, 1961-1991

Table 2

from historical precipitation record and averaged over 30 simulated precipitation records

mean wet std. dev. fraction of longest wet
spell length  wet spell wet days spell length
(days) (days) (days)
Season 1
25% quantile 1.89 1.29 0.31 9
Median 1.92 1.37 0.32 10
75% quantile 1.99 1.43 0.33 11.8
historical 1.86 - 1.29 0.32 10
Season 2
25% quantile 1.87 1.27 0.25 8
Median 191 1.34 0.25 9
75% quantile 1.95 141 0.26 10
historical 2.12 1.47 0.27 12
Season 3
25% quantile 1.79 1.23 0.19 8
Median 1.86 1.29 0.20 9
75% quantile 1.91 1.37 0.20 10
historical 1.60 0.9 0.18" 7
Season4 -
25% quantile 1.85 1.27 0.25 8
Median 1.87 1.32 0.26 9
75% quantile 1.92 1.38 0.27 10
historical 1.97 1.36 0.26 9
Annual
25% quantile - 1.88 1.32 0.26 10
Median 191 1.36 0.26 11
75% quantile 1.94 1.39 0.26 13
historical 191 1.31 0.26 12
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Table 3

Statistics of dry spell length for Salt Lake City, UT, 1961-1991
from historical precipitation record and averaged over 30 simulated precipitation records

mean std. dev. fractionof  longest dry
spell length  dry spell dry days spell length
(days) (days) (days)

Season 1

25% quantile 38 3.5 0.67 23
Median 3.92 3.63 0.68 25
75% quantile 4.0 3.75 0.68 27
historical 391 3.64 0.68 30
Season 2

25% quantile 521 5.64 0.74 39
Median 548 5.91 0.75 46
75% quantile 5.59 6.25 0.76 50
historical 5.5 5.41 0.73 28
Season 3

25% quantile 6.82 7.12 0.79 44
Median 7.05 7.53 0.80 52
75% quantile 7.26 7.943 0.81 72
historical 6.87 6.92 0.82 55
Season 4

25% quantile 491 5.47 0.73 38
Median 5.09 571 0.74 43
75% quantile 5.28 591 0.75 51
historical 521 5.38 0.74 31
Annual

25% quantile 5.29 6.13 0.74 58
Median 541 6.32 0.74 70
75% quantile 5.54 6.67 0.74 86
historical 545 5.99 0.74 61
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ty.ty,... are the day indices
Ly stwyye ATE Wet day indices

tg,stdyo- ATC dry day indices
taw,tdw,~ are day indices of transition from a dry day to wet day

twdprlwd, - 3T the day indices of transition from a wet day to dry day

Figure 1. Precipitation occurrence process.
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t is the calendar day on which precipitation is required

hp is the time interval around the calendar day t

1,....N are the years in the historical record

Thick dots are the rainy days in the historical record

The kemnel function shown at the bottom is used to weight the rainfall amounts on each of the
rainy day. :

Figure 2. Precipitation generation process.
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Figure 3. Boxplots of p.d.f of wet day precipitation in each season, for model
simulated records along with the historical values.
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Figure 5. Boxplots of p.m.f. of wet spell length over the whole year, for model
simulated records along with the historical values.
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Figure 6. Boxplots of p.m.f. of dry spell length in each season, for model simulated

records along with the historical values.

. Page 28

Mon, Feb 27, 1995




pmi
010 0.15 0.20 0.25

0.05

0.0

Dry Spell langth

Figure 7. Boxplots of p.m.f. of dry spell length over the whole year, for model
simulated records along with the historical values.
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