1,875 research outputs found

    On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schr\"odinger equations

    Get PDF
    Using a moving space curve formalism, geometrical as well as gauge equivalence between a (2+1) dimensional spin equation (M-I equation) and the (2+1) dimensional nonlinear Schr\"odinger equation (NLSE) originally discovered by Calogero, discussed then by Zakharov and recently rederived by Strachan, have been estabilished. A compatible set of three linear equations are obtained and integrals of motion are discussed. Through stereographic projection, the M-I equation has been bilinearized and different types of solutions such as line and curved solitons, breaking solitons, induced dromions, and domain wall type solutions are presented. Breaking soliton solutions of (2+1) dimensional NLSE have also been reported. Generalizations of the above spin equation are discussed.Comment: 32 pages, no figures, accepted for publication in J. Math. Phy

    A (2+1) dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures

    Get PDF
    A non-isospectral (2+1) dimensional integrable spin equation is investigated. It is shown that its geometrical and gauge equivalent counterparts is the (2+1) dimensional nonlinear Schr\"odinger equation introduced by Zakharov and studied recently by Strachan. Using a Hirota bilinearised form, line and curved soliton solutions are obtained. Using certain freedom (arbitrariness) in the solutions of the bilinearised equation, exponentially localized dromion-like solutions for the potential is found. Also, breaking soliton solutions (for the spin variables) of the shock wave type and algebraically localized nature are constructed.Comment: 14 pages, LaTex, no figures; email of first author: [email protected] and [email protected]

    Influence of field-like torque in synchronization of spin torque oscillators

    Full text link
    The magnetization dynamics of two parallelly coupled spin torque oscillators, destabilization of steady states and removal of multistability, are investigated by taking into account the influence of field-like torque. It is shown that the existence of such torque can cancel the effect of damping and can, therefore, cause the oscillators to exhibit synchronized oscillations in response to direct current. Further, our results show that the presence of field-like torque enhances the power and Q-factor of the synchronized oscillations. The validity of the above results is confirmed by numerical and analytical studies based on the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation.Comment: 10 pages, 10 figures, Accepted for Publication in IEEE Transactions on Magnetic

    Integrable (2+1)-Dimensional Spin Models with Self-Consistent Potentials

    Full text link
    Integrable spin systems possess interesting geometrical and gauge invariance properties and have important applications in applied magnetism and nanophysics. They are also intimately connected to the nonlinear Schr\"odinger family of equations. In this paper, we identify three different integrable spin systems in (2 + 1) dimensions by introducing the interaction of the spin field with more than one scalar potential, or vector potential, or both. We also obtain the associated Lax pairs. We discuss various interesting reductions in (2 + 1) and (1 + 1) dimensions. We also deduce the equivalent nonlinear Schr\"odinger family of equations, including the (2 + 1)-dimensional version of nonlinear Schr\"odinger--Hirota--Maxwell--Bloch equations, along with their Lax pairs.Comment: 21 page
    • …
    corecore