4,451 research outputs found
Oscillating Fracture in Rubber
We have found an oscillating instability of fast-running cracks in thin
rubber sheets. A well-defined transition from straight to oscillating cracks
occurs as the amount of biaxial strain increases. Measurements of the amplitude
and wavelength of the oscillation near the onset of this instability indicate
that the instability is a Hopf bifurcation
New Wrinkles on an Old Model: Correlation Between Liquid Drop Parameters and Curvature Term
The relationship between the volume and surface energy coefficients in the
liquid drop A^{-1/3} expansion of nuclear masses is discussed. The volume and
surface coefficients in the liquid drop expansion share the same physical
origin and their physical connection is used to extend the expansion with a
curvature term. A possible generalization of the Wigner term is also suggested.
This connection between coefficients is used to fit the experimental nuclear
masses. The excellent fit obtained with a smaller number of parameters
validates the assumed physical connection.Comment: 6 pages, 2 figure
All Together : We\u27re out to beat the hun
https://digitalcommons.library.umaine.edu/mmb-vp/5248/thumbnail.jp
Evolution of antiferromagnetic domains in the all-in-all-out ordered pyrochlore NdZrO
We report the observation of magnetic domains in the exotic,
antiferromagnetically ordered all-in-all-out state of NdZrO,
induced by spin canting. The all-in-all-out state can be realized by Ising-like
spins on a pyrochlore lattice and is established in NdZrO below
0.31 K for external magnetic fields up to 0.14 T. Two different spin
arrangements can fulfill this configuration which leads to the possibility of
magnetic domains. The all-in-all-out domain structure can be controlled by an
external magnetic field applied parallel to the [111] direction. This is a
result of different spin canting mechanism for the two all-in-all-out
configurations for such a direction of the magnetic field. The change of the
domain structure is observed through a hysteresis in the magnetic
susceptibility. No hysteresis occurs, however, in case the external magnetic
field is applied along [100].Comment: Accepted for publication in Phys. Rev. B, 6 pages, 6 figure
Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7
We present synchrotron x-ray diffraction, neutron powder diffraction and
time-of-flight inelastic neutron scattering measurements on the rare earth
pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and
cystal field states. The structural characterization by high-resolution
synchrotron x-ray diffraction confirms that the pyrochlore structure has no
detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals
long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with
propagation vector k = (0 0 0) and an ordered moment of 1.26(2) \mu_B/Nd at 0.1
K. The ordered moment is much smaller than the estimated moment of 2.65
\mu_B/Nd for the local Ising ground state of Nd3+ (J=9/2) suggesting that
the ordering is partially suppressed by quantum fluctuations. The strong Ising
anisotropy is further confirmed by the inelastic neutron scattering data which
reveals a well-isolated dipolar-octupolar type Kramers doublet ground state.
The crystal field level scheme and ground state wavefunction have been
determined.Comment: 12 pages, 15 figures, 2 table
Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet
Confinement is a process by which particles with fractional quantum numbers
bind together to form quasiparticles with integer quantum numbers. The
constituent particles are confined by an attractive interaction whose strength
increases with increasing particle separation and as a consequence, individual
particles are not found in isolation. This phenomenon is well known in particle
physics where quarks are confined in baryons and mesons. An analogous
phenomenon occurs in certain magnetic insulators; weakly coupled chains of
spins S=1/2. The collective excitations in these systems is spinons (S=1/2). At
low temperatures weak coupling between chains can induce an attractive
interaction between pairs of spinons that increases with their separation and
thus leads to confinement. In this paper, we employ inelastic neutron
scattering to investigate the spinon confinement in the quasi-1D S=1/2 XXZ
antiferromagnet SrCo2V2O8. Spinon excitations are observed above TN in
quantitative agreement with established theory. Below TN the pairs of spinons
are confined and two sequences of meson-like bound states with longitudinal and
transverse polarizations are observed. Several theoretical approaches are used
to explain the data. A new theoretical technique based on Tangent-space Matrix
Product States gives a very complete description of the data and provides good
agreement not only with the energies of the bound modes but also with their
intensities. We also successfully explained the effect of temperature on the
excitations including the experimentally observed thermally induced resonance
between longitudinal modes below TN ,and the transitions between thermally
excited spinon states above TN. In summary, our work establishes SrCo2V2O8 as a
beautiful paradigm for spinon confinement in a quasi-1D quantum magnet and
provides a comprehensive picture of this process.Comment: 17 pages, 18 figures, submitted to PR
- …