7,536 research outputs found
DDSL: Efficient Subgraph Listing on Distributed and Dynamic Graphs
Subgraph listing is a fundamental problem in graph theory and has wide
applications in areas like sociology, chemistry, and social networks. Modern
graphs can usually be large-scale as well as highly dynamic, which challenges
the efficiency of existing subgraph listing algorithms. Recent works have shown
the benefits of partitioning and processing big graphs in a distributed system,
however, there is only few work targets subgraph listing on dynamic graphs in a
distributed environment. In this paper, we propose an efficient approach,
called Distributed and Dynamic Subgraph Listing (DDSL), which can incrementally
update the results instead of running from scratch. DDSL follows a general
distributed join framework. In this framework, we use a Neighbor-Preserved
storage for data graphs, which takes bounded extra space and supports dynamic
updating. After that, we propose a comprehensive cost model to estimate the I/O
cost of listing subgraphs. Then based on this cost model, we develop an
algorithm to find the optimal join tree for a given pattern. To handle dynamic
graphs, we propose an efficient left-deep join algorithm to incrementally
update the join results. Extensive experiments are conducted on real-world
datasets. The results show that DDSL outperforms existing methods in dealing
with both static dynamic graphs in terms of the responding time
Physics of Neutron Star Kicks
It is no longer necessary to `sell' the idea of pulsar kicks, the notion that
neutron stars receive a large velocity (a few hundred to a thousand km
s) at birth. However, the origin of the kicks remains mysterious. We
review the physics of different kick mechanisms, including hydrodynamically
driven, neutrino and magnetically driven kicks.Comment: 8 pages including 1 figure. To be published in "Stellar Astrophysics"
(Pacific Rim Conference Proceedings), (Kluwer Pub.
Association analysis of a microsatellite repeat in the TRIB1 gene with prostate cancer risk, aggressiveness and survival
© 2018 Moya, Lai, Hoffman, Srinivasan, Panchadsaram, Chambers, Clements, Batra and Australian Prostate Cancer BioResource. With an estimated 1.1 million men worldwide diagnosed with prostate cancer yearly, effective and more specific biomarkers for early diagnosis could lead to better patient outcome. As such, novel genetic markers are sought for this purpose. The tribbles homologue 1 gene (TRIB1) has recently shown to have a role in prostate tumorigenesis and data-mining of prostate cancer expression data confirmed clinical significance of TRIB1 in prostate cancer. For the first time, a polymorphic microsatellite in this gene was studied for its potential association with prostate cancer risk and aggressiveness. Genomic DNA was extracted from a cohort of 1,152 prostate cancer patients and 1,196 cancer-free controls and the TTTTG-TRIB1 microsatellite was genotyped. The socio-demographic and clinical characteristics were analyzed using the non-parametric t-test and two-way ANOVA. Association of the TTTTG-TRIB1 microsatellite and prostate cancer risk and aggressiveness were analyzed by binary logistic regression and confirmed by bootstrapping. Total and prostate cancer mortality was analyzed using the Kaplan Meier test. Genotype and allele correlation with TRIB1 mRNA levels was analyzed using the non-parametric Kolmogorov-Smirnov test. To predict the effect that the TTTTG-TRIB1 polymorphisms had on the mRNA structure, the in silico RNA folding predictor tool, mfold, was used. By analyzing the publicly available data, we confirmed a significant over-expression of TRIB1 in prostate cancer compared to other cancer types, and an over-expression in prostate cancerous tissue compared to adjacent benign. Three alleles (three-five repeats) were observed for TTTTG-TRIB1. The three-repeat allele was associated with prostate cancer risk at the allele (OR = 1.16; P = 0.044) and genotypic levels (OR = 1.70; P = 0.006) and this association was age-independent. The four-repeat allele was inversely associated with prosatet cancer risk (OR = 0.57; P < 0.0001). TRIB1 expression was upregulated in tumors when compared to adjacent cancer-free tissue but was not allele specific. In silico analysis suggested that the TTTTG-TRIB1 alleles may alter TRIB1 mRNA structure. In summary, the three-repeat allele was significantly associated with prostate cancer risk, suggesting a biomarker potential for this microsatellite to predict prostate cancer. Further studies are needed to elucidate the functional role of this microsatellite in regulating TRIB1 expression, perhaps by affecting the TRIB1 mRNA structure and stability
Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.
The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts
Effect of cyclosporine on hepatic cytosolic estrogen and androgen receptor levels before and after partial hepatectomy
Estrogen and androgen receptors within the liver have been reported to modulate the hepatic regenerative response to partial hepatectomy. Moreover, cyclosporine has several untoward effects that might occur as a consequence of alterations in sex hormone activity. To evaluate these questions the following experiments were performed. Estrogen and androgen receptors in cytosol were quantitated in livers of rats treated with cyclosporine or olive oil vehicle before and after partial hepatectomy or a sham operation. Ornithine decarboxylase activity and thymidine kinase activity were assessed as indices of hepatic regeneration. Preoperative levels of estrogen receptor activity in the hepatic cytosol were significantly greater in rats treated with cyclosporine as compared to vehicle treated controls (P<0.01). In contrast, preoperative levels of androgen receptor activity in the cyclosporine-treated and vehicle-treated animals were similar. Following partial hepatectomy, a reduction in the activity of both sex hormone receptors in the hepatic cytosol was observed and was compatible with results described previously in normal animals. Unexpectedly the preoperative levels of ornithine decarboxylase (P<0.01) and thymidine kinase activity (P<0.01) were significantly greater in the rats treated with cyclosporine as compared to the vehicle treated controls. As expected, ornithine decarboxylase activity (at 6 hr) and thymidine kinase activity (at 24 hr) rose and peaked in response to a partial hepatectomy but were significantly greater (P<0.05) in the rats treated with cyclosporine as compared to the vehicle. These results show that cyclosporine treatment causes an increase in the hepatic content of estrogen receptor activity that is associated with an enhanced potential for a regenerative response. These effects of cyclosporine treatment on the sex hormone receptor levels in liver may explain the mechanisms responsible for some of the untoward effects of treatment with this agent. © 1990 Plenum Publishing Corporation
Model Guided Application for Investigating Particle Number (PN) Emissions in GDI Spark Ignition Engines
<div class="section abstract"><div class="htmlview paragraph">Model guided application (MGA) combining physico-chemical internal combustion engine simulation with advanced analytics offers a robust framework to develop and test particle number (PN) emissions reduction strategies. The digital engineering workflow presented in this paper integrates the <i>k</i>inetics &amp; SRM Engine Suite with parameter estimation techniques applicable to the simulation of particle formation and dynamics in gasoline direct injection (GDI) spark ignition (SI) engines. The evolution of the particle population characteristics at engine-out and through the sampling system is investigated. The particle population balance model is extended beyond soot to include sulphates and soluble organic fractions (SOF). This particle model is coupled with the gas phase chemistry precursors and is solved using a sectional method. The combustion chamber is divided into a wall zone and a bulk zone and the fuel impingement on the cylinder wall is simulated. The wall zone is responsible for resolving the distribution of equivalence ratios near the wall, a factor that is essential to account for the formation of soot in GDI SI engines. In this work, a stochastic reactor model (SRM) is calibrated to a single-cylinder test engine operated at 12 steady state load-speed operating points. First, the flame propagation model is calibrated using the experimental in-cylinder pressure profiles. Then, the population balance model parameters are calibrated based on the experimental data for particle size distributions from the same operating conditions. Good agreement was obtained for the in-cylinder pressure profiles and gas phase emissions such as NO<sub>x</sub>. The MGA also employs a reactor network approach to align with the particle sampling measurements procedure, and the influence of dilution ratios and temperature on the PN measurement is investigated. Lastly, the MGA and the measurements procedure are applied to size-resolved chemical characterisation of the emitted particles.</div></div></jats:p
N₂ Electroreduction to NH₃ by Selenium Vacancy‐Rich ReSe₂ Catalysis at an Abrupt Interface
Vacancy engineering has been proved repeatedly as an adoptable strategy to boost electrocatalysis, while its poor selectivity restricts the usage in nitrogen reduction reaction (NRR) as overwhelming competition from hydrogen evolution reaction (HER). Revealed by density functional theory calculations, the selenium vacancy in ReSe₂ crystal can enhance its electroactivity for both NRR and HER by shifting the d‐band from −4.42 to −4.19 eV. To restrict the HER, we report a novel method by burying selenium vacancy‐rich ReSe₂@carbonized bacterial cellulose (V_{r}‐ReSe₂@CBC) nanofibers between two CBC layers, leading to boosted Faradaic efficiency of 42.5 % and ammonia yield of 28.3 μg h^{-1} cm^{-2} at a potential of −0.25 V on an abrupt interface. As demonstrated by the nitrogen bubble adhesive force, superhydrophilic measurements, and COMSOL Multiphysics simulations, the hydrophobic and porous CBC layers can keep the internal V_{r}‐ReSe₂@CBC nanofibers away from water coverage, leaving more unoccupied active sites for the N₂ reduction (especially for the potential determining step of proton‐electron coupling and transferring processes as *NN → *NNH)
Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies
We consider new physics explanations of the anomaly in the top quark
forward-backward asymmetry measured at the Tevatron, in the context of flavor
conserving models. The recently measured LHC dijet distributions strongly
constrain many otherwise viable models. A new scalar particle in the
antitriplet representation of flavor and color can fit the t tbar asymmetry and
cross section data at the Tevatron and avoid both low- and high-energy bounds
from flavor physics and the LHC. An s-channel resonance in uc to uc scattering
at the LHC is predicted to be not far from the current sensitivity. This model
also predicts rich top quark physics for the early LHC from decays of the new
scalar particles. Single production gives t tbar j signatures with high
transverse momentum jet, pair production leads to t tbar j j and 4 jet final
states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde
- …