81 research outputs found
Observing Exoplanets with the James Webb Space Telescope
The census of exoplanets has revealed an enormous variety of planets or- biting stars of all ages and spectral types: planets in orbits of less than a day to frigid worlds in orbits over 100 AU; planets with masses 10 times that of Jupiter to planets with masses less than that of Earth; searingly hot planets to temperate planets in the Habitable Zone. The challenge of the coming decade is to move from demography to physical characterization. The James Webb Space Telescope (JWST) is poised to open a revolutionary new phase in our understanding of exoplanets with transit spectroscopy of relatively short period planets and coronagraphic imaging of ones with wide separations from their host stars. This article discusses the wide variety of exoplanet opportunities enabled by JWSTs sensitivity and stability, its high angular resolution, and its suite of powerful instruments. These capabilities will advance our understanding of planet formation, brown dwarfs, and the atmospheres of young to mature planets
Prostatic sarcoma after treatment of rectal cancer
<p>Abstract</p> <p>Background</p> <p>The relationship between radiation exposure for treatment of cancer and occurrence of a second primary cancer at the irradiated site is well known. This phenomenon is however rare in prostate.</p> <p>Case presentation</p> <p>A 75-year-old farmer was treated for rectal cancer with preoperative 45 Gy of radiotherapy and abdominoperineal resection. Four years later he developed symptoms of bladder outlet obstruction and acute urinary retention. He underwent a transurethral resection of the prostate. Histological examination of the removed prostate tissue and immunohistochemistry revealed it to be a poorly differentiated sarcoma.</p> <p>Conclusion</p> <p>We believe this to be the first reported case of radiation-induced sarcoma following radiotherapy treatment for rectal cancer. Since radiotherapy plays a pivotal role in the contemporary treatment of rectal adenocarcinoma, it is relevant to be aware of the potential long-term carcinogenic complications of radiotherapy of the pelvis.</p
A Spontaneous Mutation of the Rat Themis Gene Leads to Impaired Function of Regulatory T Cells Linked to Inflammatory Bowel Disease
Spontaneous or chemically induced germline mutations, which lead to Mendelian phenotypes, are powerful tools to discover new genes and their functions. Here, we report an autosomal recessive mutation that occurred spontaneously in a Brown-Norway (BN) rat colony and was identified as causing marked T cell lymphopenia. This mutation was stabilized in a new rat strain, named BNm for “BN mutated.” In BNm rats, we found that the T cell lymphopenia originated in the thymus, was intrinsic to CD4 T lymphocytes, and was associated with the development of an inflammatory bowel disease. Furthermore, we demonstrate that the suppressive activity of both peripheral and thymic CD4+ CD25bright regulatory T cells (Treg) is defective in BNm rats. Complementation of mutant animals with BN Treg decreases disease incidence and severity, thus suggesting that the impaired Treg function is involved in the development of inflammatory bowel disease in BNm rats. Moreover, the cytokine profile of effector CD4 T cells is skewed toward Th2 and Th17 phenotypes in BNm rats. Linkage analysis and genetic dissection of the CD4 T cell lymphopenia in rats issued from BNm×DA crosses allowed the localization of the mutation on chromosome 1, within a 1.5 megabase interval. Gene expression and sequencing studies identified a frameshift mutation caused by a four-nucleotide insertion in the Themis gene, leading to its disruption. This result is the first to link Themis to the suppressive function of Treg and to suggest that, in Themis-deficient animals, defect of this function is involved in intestinal inflammation. Thus, this study highlights the importance of Themis as a new target gene that could participate in the pathogenesis of immune diseases characterized by chronic inflammation resulting from a defect in the Treg compartment
Cellular binding partners of the human papillomavirus E6 protein
The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis
Distance Determination Method for Normally Distributed Obstacle Avoidance of Mobile Robots in Stochastic Environments
- …
