59 research outputs found

    Tunable Negative Differential Resistance controlled by Spin Blockade in Single Electron Transistors

    Full text link
    We demonstrate a tunable negative differential resistance controlled by spin blockade in single electron transistors. The single electron transistors containing a few electrons and spin polarized source and drain contacts were formed in GaAs/GaAlAs heterojunctions using metallic gates. Coulomb blockade measurements performed as a function of applied source-drain bias, electron number and magnetic field reveal well defined regimes where a decrease in the current is observed with increasing bias. We establish that the origin of the negative differential regime is the spin-polarized detection of electrons combined with a long spin relaxation time in the dot. These results indicate new functionalities that may be utilized in nano-spintronic devices in which the spin state is electro-statically controlled via the electron occupation number.Comment: 8 pages, 4 figure

    The Collapse of the Spin-Singlet Phase in Quantum Dots

    Full text link
    We present experimental and theoretical results on a new regime in quantum dots in which the filling factor 2 singlet state is replaced by new spin polarized phases. We make use of spin blockade spectroscopy to identify the transition to this new regime as a function of the number of electrons. The key experimental observation is a reversal of the phase in the systematic oscillation of the amplitude of Coulomb blockade peaks as the number of electrons is increased above a critical number. It is found theoretically that correlations are crucial to the existence of the new phases.Comment: REVTeX4, 4 pages, 4 figures, to appear in PR

    Voltage-tunable singlet-triplet transition in lateral quantum dots

    Full text link
    Results of calculations and high source-drain transport measurements are presented which demonstrate voltage-tunable entanglement of electron pairs in lateral quantum dots. At a fixed magnetic field, the application of a judiciously-chosen gate voltage alters the ground-state of an electron pair from an entagled spin singlet to a spin triplet.Comment: 8.2 double-column pages, 10 eps figure

    Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

    Get PDF
    One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary fil

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    Pumped double quantum dot with spin-orbit coupling

    Get PDF
    We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures

    Spin-orbit qubit in a semiconductor nanowire

    Get PDF
    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to electrically control spins and as such lies at the foundation of spintronics. Even at the level of single electrons, spin-orbit interaction has proven promising for coherent spin rotations. Here we report a spin-orbit quantum bit implemented in an InAs nanowire, where spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime we realize fast qubit rotations and universal single qubit control using only electric fields. We enhance coherence by dynamically decoupling the qubit from the environment. Our qubits are individually addressable: they are hosted in single-electron quantum dots, each of which has a different Land\'e g-factor. The demonstration of a nanowire qubit opens ways to harness the advantages of nanowires for use in quantum computing. Nanowires can serve as one-dimensional templates for scalable qubit registers. Unique to nanowires is the possibility to easily vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and push semiconductor qubit fidelities towards error-correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, the flying qubit, for long-distance quantum communication

    Genome-Wide Interaction-Based Association Analysis Identified Multiple New Susceptibility Loci for Common Diseases

    Get PDF
    Genome-wide interaction-based association (GWIBA) analysis has the potential to identify novel susceptibility loci. These interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS). However, no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a major barrier for application. Here, we developed a fast, multi-thread/parallel program named “pair-wise interaction-based association mapping” (PIAM) for exhaustive two-locus searches. With this program, we performed a complete GWIBA analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases. We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was specific for Crohn's disease, with a Bonferroni corrected P<0.05 (P = 0.039). This interaction was replicated with a pair of proxy linked loci (P = 0.013) on an independent dataset. Five other interactions had corrected P<0.5. We identified the allelic effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent dataset (P = 1.09×10−7). Through a local validation analysis that evaluated association signals, rather than locus-based associations, we found that several other regions showed association/interaction signals with nominal P<0.05. In conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of handling very large GWAS datasets that are likely to be produced in the future

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF
    corecore