4,622 research outputs found
Thermal Effects on the Magnetic Field Dependence of Spin Transfer Induced Magnetization Reversal
We have developed a self-aligned, high-yield process to fabricate CPP
(current perpendicular to the plane) magnetic sensors of sub 100 nm dimensions.
A pinned synthetic antiferromagnet (SAF) is used as the reference layer which
minimizes dipole coupling to the free layer and field induced rotation of the
reference layer. We find that the critical currents for spin transfer induced
magnetization reversal of the free layer vary dramatically with relatively
small changes the in-plane magnetic field, in contrast to theoretical
predictions based on stability analysis of the Gilbert equations of
magnetization dynamics including Slonczewski-type spin-torque terms. The
discrepancy is believed due to thermal fluctuations over the time scale of the
measurements. Once thermal fluctuations are taken into account, we find good
quantitative agreement between our experimental results and numerical
simulations.Comment: 14 pages, 4 figures, Submitted to Appl. Phys. Lett., Comparison of
some of these results with a model described by N. Smith in cond-mat/040648
Magnetic domain wall propagation in a submicron spin-valve stripe: influence of the pinned layer
The propagation of a domain wall in a submicron ferromagnetic spin-valve
stripe is investigated using giant magnetoresistance. A notch in the stripe
efficiently traps an injected wall stopping the domain propagation. The authors
show that the magnetic field at which the wall is depinned displays a
stochastic nature. Moreover, the depinning statistics are significantly
different for head to head and tail-to-tail domain walls. This is attributed to
the dipolar field generated in the vicinity of the notch by the pinned layer of
the spin-valve
Unveiling the near-infrared structure of the massive-young stellar object NGC 3603 IRS 9A with sparse aperture masking and spectroastrometry
Contemporary theory holds that massive stars gather mass during their initial
phases via accreting disk-like structures. However, conclusive evidence for
disks has remained elusive for the most massive young objects. This is mainly
due to significant observational challenges. Incisive studies, even targeting
individual objects, are therefore relevant to the progression of the field. NGC
3603 IRS 9A* is a young massive stellar object still surrounded by an envelope
of molecular gas. Previous mid-infrared observations with long-baseline
interferometry provided evidence for a disk of 50 mas diameter at its core.
This work aims at a comprehensive study of the physics and morphology of IRS 9A
at near-infrared wavelengths. New sparse aperture masking interferometry data
taken with NACO/VLT at Ks and Lp filters were obtained and analysed together
with archival CRIRES spectra of the H2 and BrG lines. The calibrated
visibilities recorded at Ks and Lp bands suggest the presence of a partially
resolved compact object of 30 mas at the core of IRS 9A, together with the
presence of over-resolved flux. The spectroastrometric signal of the H2 line
shows that this spectral feature proceeds from the large scale extended
emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the
core of the object (20 mas). This scenario is consistent with the brightness
distribution of the source for near- and mid-infrared wavelengths at various
spatial scales. However, our model suffers from remaining inconsistencies
between SED modelling and the interferometric data. Moreover, the BrG
spectroastrometric signal indicates that the core of IRS 9A exhibits some form
of complexity such as asymmetries in the disk. Future high-resolution
observations are required to confirm the disk/envelope model and to flesh out
the details of the physical form of the inner regions of IRS 9A.Comment: Accepted to be published in Astronomy & Astrophysics, 13 pages, 14
figure
360 degree domain wall generation in the soft layer of magnetic tunnel junctions
High spatial resolution X-ray photo-emission electron microscopy technique
has been used to study the influence of the dipolar coupling taking place
between the NiFe and the Co ferromagnetic electrodes of micron sized,
elliptical shaped magnetic tunnel junctions. The chemical selectivity of this
technique allows to observe independently the magnetic domain structure in each
ferromagnetic electrode. The combination of this powerful imaging technique
with micromagnetic simulations allows to evidence that a 360 degree domain wall
can be stabilized in the NiFe soft layer. In this letter, we discuss the origin
and the formation conditions of those 360 degree domain walls evidenced
experimentally and numerically
Effects of exposure to hypoxia on the signal-averaged electrocardiogram in healthy subjects
The effects of hypoxia on the signal-averaged ECG (SAECG) were investigated in 26 healthy active subjects with no suggestion of cardiac disease. The SAECG was recorded in each resting subject in normoxic and hypoxic normobaric conditions (inspired O2 fraction 20.7 vs 10.0%) which lowered resting arterial O2 saturation from 98.6 +0.6% to 77.7 ± 8%. Recordings from four subjects (three men) met the definition of abnormal late potentials at baseline; in all these subjects but one, who exhibited an improved but still abnormal QRS duration, these parameters returned to normal in hypoxic conditions. The duration of the filtered QRS was significantly reduced (from 107.6 ±13.2 to 101.6 ± 11.3 ms, P<001), the duration of the low amplitude signals in the terminal portion of the QRS <40 μ V (LAS) significantly decreased (from 26.5 ± 9.5 to 22.7 ± 7.9 ms, P<005) and the root mean square voltage in the last 40 ms (Term-RMS) increased non-significantly (from 55.8±40.2 to 69.1±38.3 μV, P=0.058). Hypoxia determined a higher (P<0.05) heart rate increase in subjects with abnormal records than in normal subjects. These data could be related to a sympathic discharge. They suggest that: (1) variation in heart rate could affect the SAECG; (2) exposure to hypoxia improves SAECG parameters in healthy subjects, possibly related to sympathetic discharge; (3) abnormal records collected during sinus bradycardia could represent a type of false-positive expression of late potentials in young active adult
- …