124 research outputs found

    Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52

    Full text link
    I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic liquid crystal I52. Without modulation, the primary bifurcation from the uniform state is a direct transition to a state of spatiotemporal chaos. This state is the result of the interaction of four, degenerate traveling modes: right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls, i.e. standing rectangles, are observed. These results are compared with existing predictions based on coupled complex Ginzburg-Landau equations

    Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to <it>H. pylori</it>-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the <it>H. pylori</it>-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both <it>ex vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p>The expression of Progranulin was studied in biopsies of <it>H. pylori</it>-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR.</p> <p>Results</p> <p><it>H. pylori</it>-infected subjects had about 2-fold increased antral Progranulin expression compared to <it>H. pylori</it>-negative and -eradicated subjects (P < 0.05). Overall, no correlations between mucosal Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to <it>H. pylori </it>infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The <it>H. pylori</it>-induced upregulation of Progranulin was verified in AGS cells infected by <it>H. pylori</it>. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by <it>H. pylori</it>.</p> <p>Conclusions</p> <p>Taken together, Progranulin was identified as novel molecule that is upregulated in context to <it>H. pylori </it>infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in <it>H. pylori</it>-mediated gastritis.</p

    Complex Dynamics of Bus, Tram and Elevator Delays in Transportation System

    Full text link
    It is necessary and important to operate buses and trams on time. The bus schedule is closely related to the dynamic motion of buses. In this part, we introduce the nonlinear maps for describing the dynamics of shuttle buses in the transportation system. The complex motion of the buses is explained by the nonlinear-map models. The transportation system of shuttle buses without passing is similar to that of the trams. The transport of elevators is also similar to that of shuttle buses with freely passing. The complex dynamics of a single bus is described in terms of the piecewise map, the delayed map, the extended circle map and the combined map. The dynamics of a few buses is described by the model of freely passing buses, the model of no passing buses, and the model of increase or decrease of buses. The nonlinear-map models are useful to make an accurate estimate of the arrival time in the bus transportation

    Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape

    Get PDF
    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.National Institutes of Health (U.S.) (Common Fund 5UL1DE019581)National Institutes of Health (U.S.) (Common Fund RL1DE019021)National Institutes of Health (U.S.) (Common Fund 5TL1EB008540)National Institutes of Health (U.S.) (Grant 1U01HG007037)National Institutes of Health (U.S.) (Grant 5P01NS055923

    Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.

    Get PDF
    Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases
    corecore