19 research outputs found

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Evaluation of school tasks in the light of sustainability education: textbook research in science education in Luxembourgish primary schools

    No full text

    Lipopolysaccharide-Squamous Cell Carcinoma-Monocyte Interactions Induce Cancer-Supporting Factors Leading to Rapid STAT3 Activation

    No full text
    Oral and oro-pharyngeal squamous cell carcinomas (OSCC) exhibit surface breach, and recent studies have demonstrated bacterial contamination of primary and metastatic OSCC. Increasing concentrations of inflammatory products, such as interleukin (IL)-6 and vascular endothelial growth factor (VEGF), correlate with, and contribute to, cancer progression, but their regulation in OSCC is poorly understood. We hypothesized that monocyte-lineage cells and bacterial contamination may contribute important inflammatory products that can support OSCC progression. We found that relative to non-specific chronic mucositis, oral carcinoma-in-situ/superficially-invasive OSCC contained more monocyte-lineage cells. In vitro, we used lipopolysaccharide (LPS) to model bacterial contamination, and evaluated the effects of oral and oropharyngeal (O)SCC-monocyte interactions and of LPS on OSCC cells and on the production of IL-6 and VEGF. OSCC cell lines varied in constitutive cytokine and chemokine production, and OSCC-monocyte interactions in the absence of LPS stimulated IL-6 and VEGF occasionally, while LPS-OSCC-monocyte interactions were always strongly stimulatory. Importantly, LPS independently stimulated some OSCC lines to secrete monocyte-dendritic cell chemoattractants CCL2 and/or CCL20, as well as IL-6 and/or VEGF. While very little constitutive Y705-STAT3 phosphorylation (pY705-STAT3) was detectable in HNSCC lines, IL-6 rapidly induced pY705-STAT3 in OSCC lines that produced little IL-6 constitutively. Supernatants from LPS-OSCC-monocyte co-cultures always rapidly and strongly activated STAT3, which was partly due to IL-6. We conclude that monocytes and microbial contamination have the potential to contribute to OSCC progression, as STAT3 activation in OSCC cells depends on soluble factors, which are consistently available through LPS-OSCC-monocyte interactions
    corecore