118 research outputs found

    Movilidad sostenible en entornos turĂ­sticos. Singularidades y medidas

    Get PDF
    Las medidas orientadas a la movilidad sostenible se encuentran generalmente bien desarrolladas, al menos en el plano teĂłrico, para entornos urbanos convencionales, esto es, para ciudades donde la movilidad sigue una pauta esencialmente recurrente y vinculada a motivos como el trabajo y el estudio. Sin embargo, en entornos donde el turismo es una componente predominante, la movilidad es claramente diferente. Las motivaciones de los viajes son diferentes, la valoraciĂłn del tiempo es diferente, las pautas espacio-temporales son diferentes. Por tanto, las medidas para la sostenibilidad de la movilidad han de ser diferentes

    Worst cases for a one-hop high frequency link

    Get PDF
    The characterisation of a HF channel by means of monthly electron density profiles can be complemented with a detailed study of radio propagation «worst cases» on situations with extremes conditions of radiopropagation for a given period. These «worst cases» correspond to conditions that can be identified by means of cumulative distributions of the key parameter f0F2. This paper analyses the main parameters of the HF channel: time delay, apogee, elevation angle and transmission frequency with mean and extreme conditions. The method used to characterise the ionospheric channel is based on ray-tracing techniques.National Institute of Aerospace Technology (INTA)Dr. Moorhead of Neptune Radar Ltd.Gloucester U.

    Worst cases for an one-hop high frequency link

    Get PDF
    The characterisation of a HF channel by means of monthly electron density profiles can be complemented with a detailed study of radio propagation «worst cases» on situations with extremes conditions of radiopropagation for a given period. These «worst cases» correspond to conditions that can be identified by means of cumulative distributions of the key parameter f0F2. In this paper, the main parameters of the HF channel: time delay, apogee, elevation angle and transmission frequency with mean and extreme conditions are analysed. The method used to characterise the ionospheric channel is based on ray-tracing techniques

    A novel method for automatic detection and classification of movement patterns in short duration playing activities

    Get PDF
    Autonomous devices able to evaluate diverse situations without external help have become especially relevant in recent years because they can be used as an important source of relevant information about the activities performed by people (daily habits, sports performance, and health-related activities). Specifically, the use of this kind of device in childhood games might help in the early detection of developmental problems in children. In this paper, we propose a method for the detection and classification of movements performed with an object, based on an acceleration signal. This method can automatically generate patterns associated with a given movement using a set of reference signals, analyze sequences of acceleration trends, and classify the sequences according to the previously established patterns. This method has been implemented, and a series of experiments has been carried out using the data from a sensor-embedded toy. For the validation of the obtained results, we have, in parallel, developed two other classification systems based on popular techniques, i.e., a similarity search based on Euclidean distances and machine-learning techniques, specifically a support vector machine model. When comparing the results of each method, we show that our proposed method achieves a higher number of successes and higher accuracy in the detection and classification of isolated movement signals as well as in sequences of movements

    Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history

    Full text link
    Availability of standardized morphological and molecular characterization data is essential for the efficient development of breeding programmes in emerging crops. Pepino (Solanum muricatum) is an increasingly important vegetatively propagated vegetable crop for which concurrent data on morphological descriptors and molecular markers are not available. We evaluated 58 morphological traits, using a collection of 14 accessions of pepinos (including local Andean varieties and modern cultivars) and 8 of wild relatives, using the IPGRI and COMAV descriptors lists coupled with 20 EST-SSRs from tomato. High morphological diversity was found in both cultivated and wild accessions; all morphological traits except three were variable. Cultivated pepino and wild relatives were significantly different for 26 traits. Also, local varieties and modern cultivars of pepino were different from each other for 13 morphological traits and were clearly separated in a principal components analysis. Fourteen of the 20 tomato EST-SSRs were polymorphic, with an average number of alleles per locus of 4.07 and a polymorphic information content value of 0.4132. This revealed a high degree of transferability from tomato to pepino and wide molecular diversity in the collection. Cultivated materials manifest high levels of observed heterozygosity, suggesting that it is related to heterosis for yield associated with heterozygosis. SSR data clearly differentiated cultivated and wild materials. Furthermore, for pepinos, the modern varieties were genetically much less diverse than the traditional local varieties. However, both groups of cultivated material expressed a low degree of genetic differentiation. A strong correlation (r = 0.673) between morphological and molecular distances was found. Our results provide foundational information for programmes of germplasm conservation, and that can be used to enhance breeding for this emerging crop.Herraiz GarcĂ­a, FJ.; Vilanova Navarro, S.; AndĂșjar, I.; Torrent MartĂ­, D.; Plazas Ávila, MDLO.; Gramazio, P.; Prohens TomĂĄs, J. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica. 206(2):301-318. doi:10.1007/s10681-015-1454-8S3013182062Abouelnasr H, Li YY, Zhang ZY, Liu JY, Li SF, Li W, Yu JL, McBeath JH, Han CG (2014) First report of Potato virus H on Solanum muricatum in China. Plant Dis 98:1016Anderson GJ (1975) The variation and evolution of selected species of Solanum section Basarthrum. Brittonia 27:209–222Anderson GJ (1979) Systematic and evolutionary consideration of Solanum section Basarthrum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Royal Botanic Gardens Kew and Linnean Society, London, pp 549–562Anderson GJ, Symon DE (1988) Insect foragers on Solanum in Australia. Ann Missouri Bot Garden 75:842–852Anderson GJ, Jansen RK, Kim Y (1996) The origin and relationships of the “pepino”, Solanum muricatum (Solanaceae): DNA restriction fragment evidence. Econ Bot 50:369–380Anderson GJ, Martine CT, Prohens J, Nuez F (2006) Solanum perlongystilum and S. catilliflorum, new endemic Peruvian species of Solanum, section Basarthrum, are close relatives of the domesticated pepino, S. muricatum). Novon 16:161–167Blanca JM, Prohens J, Anderson GJ, Cañizares J, Zuriaga E, Nuez F (2007) AFLP and DNA sequence variation in an Andean domesticate, pepino (Solanum muricatum, Solanaceae): implications for evolution and domestication. Am J Bot 94:1219–1229Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphisms. Am J Human Genet 32:314–331Cavusoglu C, Sululoglu M (2013) In vitro propagation and acclimatization of pepino (Solanum muricatum). J Food Agric Environ 11(1):410–415Cocaliadis MF, FernĂĄndez-Muñoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit qualityby enhancing fruit chloroplast function. A double edged sword? J Expt Bot 65:4589–4598Cooper HD, Spillane C, Hodgkin T (2001) Broadening the genetic base of crop production. CABI, WallingfordDavis DR (2009) Declining fruit and vegetable nutrient composition: What is the evidence? HortScience 44:15–19Dawes SN, Pringle GJ (1983) Subtropical fruits from South and Central America. In: Wratt G, Smith HC (eds) Plant breeding in New Zealand. Butterworths, Wellington, pp 33–35Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization, RomeFrary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312Ghislain M, NĂșñez J, Herrera MR, Pignataro J, Guzman F, Bonierbale M, Spooner DM (2009) Robust and highly informative microsatellite-based genetic identity kit for potato. Mol Breed 23:377–388Hsu CC, Guo YR, Wang ZH, Yin MC (2011) Protective effects of an aqueous extract from pepino (Solanum muricatum Ait.) in diabetic mice. J Sci Food Agric 91:1517–1522IPGRI, COMAV (2004) Descriptors for pepino (Solanum muricatum). International Plant Genetic Resources Institute, RomeKalia RK, Mai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334Khoury C, LalibertĂ© B, Guarino L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Res Crop Evol 57:625–639Levy D, Kedar N, Levy N (2006) Pepino (Solanum muricatum Aiton): Breeding in Israel for better taste and aroma. Israel J Plant Sci 54:205–213Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, StĂ€dler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insight into the history of tomato breeding. Nature Genet 46:1220–1226Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Expt Bot 63:1075–1079Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117Mione T, Anderson GJ (1992) Pollen-ovule ratios and breeding system evolution in Solanum section Basarthrum (Solanaceae). Am J Bot 79:279–287Muñoz C, PertuzĂ© R, Balzarini M, Bruno C, Salvatierra A (2014) Genetic variability in Chilean pepino (Solanum muricatum Aiton) fruit. Chil J Agric Res 74:143–147Nei M (1973) Analysis of genetic diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai YL, de Jong H (2012) Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J 71:602–614Prohens J, Ruiz JJ, Nuez F (1996) The pepino (Solanum muricatum, Solanaceae): a “new” crop with a history. Ec Bot 50:355–368Prohens J, Ruiz JJ, Nuez F (1998) The inheritance of parthenocarpy and associated traits in the pepino. J Amer Soc Hort Sci 123:376–380Prohens J, Leiva-Brondo M, RodrĂ­guez-Burruezo A, Nuez F (2002) ‘Puzol’: a facultively parthenocarpic hybrid of pepino (Solanum muricatum). HortScience 37:418–419Prohens J, SĂĄnchez MC, RodrĂ­guez-Burruezo A, CĂĄmara M, Torija E, Nuez F (2005) Morphological and physico-chemical characteristics of fruits of pepino (Solanum muricatum), wild relatives (S. caripense and S. tabanoense) and interspecific hybrids. Implications in pepino breeding. Eur J Hort Sci 70:224–230Rao VR, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue Organ Cult 68:1–19RodrĂ­guez-Burruezo A, Prohens J, Nuez F (2003a) Wild relatives can contribute to the improvement of fruit quality in pepino (Solanum muricatum). Euphytica 129:311–318RodrĂ­guez-Burruezo A, Prohens J, Nuez F (2003b) Performance of hybrid segregating populations of pepino (Solanum muricatum) and its relation to genetic distance among parents. J Hort Sci Biotechnol 78:911–918RodrĂ­guez-Burruezo A, Prohens J, Leiva-Brondo M, Nuez F (2004a) ‘Turia’ pepino. Can J Plant Sci 84:603–606RodrĂ­guez-Burruezo A, Prohens J, Nuez F (2004b) ‘Valencia’: a new pepino (Solanum muricatum) cultivar with improved fruit quality. HortScience 39:1500–1502RodrĂ­guez-Burruezo A, Prohens J, Fita AM (2011) Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): a model for the enhancement of underutilized exotic fruits. Food Res Intl 44:1927–1935Ruiz JJ, Prohens J, Nuez F (1997) ‘Sweet Round’ and ‘Sweet Long’: Two pepino cultivars for Mediterranean climates. HortScience 32:751–752Sakomoto K, Taguchi T (1991) Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. Theor Appl Genet 81:509–513SĂ€rkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234Simms C (1996) Catalogue of plants. Clive Simms, LincolnshireSmouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Amer J Bot 80:676–688Sudha G, Priya MS, Shree RBI, Vadivukkarasi S (2012) Antioxidant activity of ripe and unripe pepino fruit (Solanum muricatum Aiton). J Food Sci 77:C1131–C1135Suresh BV, Roy R, Sahu K, Misra G, Chattopadhyay D (2014) Tomato genomic resources database: an integrated repository of useful tomato genomic information for basic and applied research. PLoS One 9:e86387Vilanova S, Hurtado M, Cardona A, Plazas M, Gramazio P, Herraiz FJ, AndĂșjar I, Prohens J (2014) Genetic diversity and relationships in local varieties of eggplant from different cultivar groups as assessed by genomic SSR markers. Not Bot Horti Agrobo 42:59–65Yalçin H (2010) Effect of ripening period on composition of pepino (Solanum muricatum) fruit grown in Turkey. Afr J Biotechnol 9:3901–3903Yildiz M, Akgul N, Sensoy S (2014) Morphological and molecular characterization of Turkish landraces of Cucumis melo L. Not Bot Horti Agrobo 42:51–5

    Genomic tools for the enhancement of vegetable crops: a case in eggplant

    Full text link
    [EN] Dramatic advances in genomics during the last decades have led to a revolution in the field of vegetable crops breeding. Some vegetables, like tomato, have served as model crops in the application of genomic tools to plant breeding but other important crops, like eggplant (Solanum melongena), lagged behind. The advent of next generation sequencing (NGS) technologies and the continuous decrease of the sequencing costs have allowed to develop genomic tools with a greatly benefit for no-model plants such as eggplant. In this review we present the currently available genomic resources in eggplant and discuss their interest for breeding. The first draft of eggplant genome sequence and the new upcoming improved assembly, as well as the transcriptomes and RNA-based studies represent important genomic tools. The transcriptomes of cultivated eggplant and several wild relatives of eggplant are also available and have provided relevant information for the development of markers and understanding biological processes in eggplant. In addition, a historical overview of the eggplant genetic mapping studies, performed with different types of markers and experimental populations, provides a picture of the increase over time of the precision and resolution in the identification of candidate genes and QTLs for a wide range of stresses, and morphoagronomic and domestication traits. Finally, we discuss how the development of new genetic and genomic tools in eggplant can pave the way for increasing the efficiency of eggplant breeding for developing improved varieties able to cope with the old and new challenges in horticultural production.This work has been funded in part by the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/. Funding has also been received from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO / FEDER). Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva programme (FCJI-2015-24835). Giulio Mangino is grateful to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana for a pre-doctoral grant within the Santiago Grisolia programme (GRISOLIAP / 2016/012).Gramazio, P.; Prohens Tomås, J.; Plazas Ávila, MDLO.; Mangino, G.; Herraiz García, FJ.; García-Fortea, E.; Vilanova Navarro, S. (2018). Genomic tools for the enhancement of vegetable crops: a case in eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 46(1):1-13. https://doi.org/10.15835/nbha46110936S11346

    The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato

    Get PDF
    [EN] Background Solanum sect. Basarthrum is phylogenetically very close to potatoes (Solanum sect. Petota) and tomatoes (Solanum sect. Lycopersicon), two groups with great economic importance, and for which Solanum sect. Basarthrum represents a tertiary gene pool for breeding. This section includes the important regional cultigen, the pepino (Solanum muricatum), and several wild species. Among the wild species, S. caripense is prominent due to its major involvement in the origin of pepino and its wide geographical distribution. Despite the value of the pepino as an emerging crop, and the potential for gene transfer from both the pepino and S. caripense to potatoes and tomatoes, there has been virtually no genomic study of these species. Results Using Illumina HiSeq 2000, RNA-Seq was performed with a pool of three tissues (young leaf, flowers in pre-anthesis and mature fruits) from S. muricatum and S. caripense, generating almost 111,000,000 reads among the two species. A high quality de novo transcriptome was assembled from S. muricatum clean reads resulting in 75,832 unigenes with an average length of 704 bp. These unigenes were functionally annotated based on similarity of public databases. We used Blast2GO, to conduct an exhaustive study of the gene ontology, including GO terms, EC numbers and KEGG pathways. Pepino unigenes were compared to both potato and tomato genomes in order to determine their estimated relative position, and to infer gene prediction models. Candidate genes related to traits of interest in other Solanaceae were evaluated by presence or absence and compared with S. caripense transcripts. In addition, by studying five genes, the phylogeny of pepino and five other members of the family, Solanaceae, were studied. The comparison of S. caripense reads against S. muricatum assembled transcripts resulted in thousands of intra- and interspecific nucleotide-level variants. In addition, more than 1000 SSRs were identified in the pepino transcriptome. Conclusions This study represents the first genomic resource for the pepino. We suggest that the data will be useful not only for improvement of the pepino, but also for potato and tomato breeding and gene transfer. The high quality of the transcriptome presented here also facilitates comparative studies in the genus Solanum. The accurate transcript annotation will enable us to figure out the gene function of particular traits of interest. The high number of markers (SSR and nucleotide-level variants) obtained will be useful for breeding programs, as well as studies of synteny, diversity evolution, and phylogeny.Herraiz GarcĂ­a, FJ.; Blanca Postigo, JM.; Ziarsolo Areitioaurtena, P.; Gramazio, P.; Plazas Ávila, MDLO.; Anderson, GJ.; Prohens TomĂĄs, J.... (2016). The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato. BMC Genomics. 17(321). doi:10.1186/s12864-016-2656-817321Anderson GJ, Jansen RK, Kim Y. The origin and relationships of the pepino, Solanum muricatum (Solanaceae): DNA restriction fragment evidence. Econ Bot. 1996;50:369–80.Anderson GJ, Martine CT, Prohens J, Nuez F. Solanum perlongistylum and S. catilliflorum, new endemic Peruvian species of Solanum, Section Basarthrum, are close relatives of the domesticated pepino, S. muricatum. Novon. 2006;16:161–7.RodrĂ­guez-Burruezo A, Prohens J, Fita AM. Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits. Food Res Int. 2011;44:1927–35.Yalçin H. Effect of ripening period on composition of pepino (Solanum muricatum) fruit grown in Turkey. Afr J Biotechnol. 2010;9:3901–3.Abouelnasr H, Li Y-Y, Zhang Z-Y, Liu J-Y, Li S-F, Li D-W, Yu J-L, McBeath JH, Han C-G. First Report of Potato Virus H on Solanum muricatum in China. Plant Dis. 2014;98:1016.Spooner DM, Anderson GJ, Jansen RK. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot. 1993;80:676–88.Sarkinen T, Bohs L, Olmstead RG, Knapp S. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol. 2013;13:214.Nakitandwe J, Trognitz FCH, Trognitz BR. Genetic mapping of Solanum caripense, a wild relative of pepino dulce, tomato and potato, and a genetic resource for resistance to potato late blight. In: VI International Solanaceae Conference: Genomics Meets Biodiversity 745. 2006. p. 333–42.Sakomoto K, Taguchi T. Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. Theor Appl Genet. 1991;81:509–13.Bernardello LM, Anderson GJ. Karyotypic studies in Solanum section Basarthrum (Solanaceae). Am J Bot. 1990;77:420–31.Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 2004;9:208–18.Spooner DM, RodrĂ­guez F, PolgĂĄr Z, Ballard HE, Jansky SH. Genomic origins of potato polyploids: GBSSI gene sequencing data. Crop Sci. 2008;48(Supplement to crop science):27–36.Herraiz FJ, Vilanova S, AndĂșjar I, Torrent D, Plazas M, Gramazio P, Prohens J. Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica. 2015;206:301–18.Trognitz FC, Trognitz BR. Survey of resistance gene analogs in Solanum caripense, a relative of potato and tomato, and update on R gene genealogy. Mol Genet Genomics. 2005;274:595–605.Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 2007;156:1–13.Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.Blanca JM, Prohens J, Anderson GJ, Zuriaga E, Canizares J, Nuez F. AFLP and DNA sequence variation in an Andean domesticate, pepino (Solanum muricatum, Solanaceae): implications for evolution and domestication. Am J Bot. 2007;94:1219–29.RodrĂ­guez-Burruezo A, Prohens J, Nuez F. Wild relatives can contribute to the improvement of fruit quality in pepino (Solanum muricatum). Euphytica. 2003;129:311–8.Herraiz FJ, Villaño D, Plazas M, Vilanova S, Ferreres F, Prohens J, Moreno DA. Phenolic profile and biological activities of the pepino (Solanum muricatum) fruit and its wild relative S. caripense. Int J Mol Sci. 2016;17:394.Leiva-Brondo M, Prohens J, Nuez F. Characterization of pepino accessions and hybrids resistant to Tomato mosaic virus (ToMV). J Food Agric Env. 2006;4:138.Nakitandwe J, Trognitz F, Trognitz B. Reliable allele detection using SNP-based PCR primers containing Locked Nucleic Acid: application in genetic mapping. Plant Methods. 2007;3:2.Andrivon D. The origin of Phytophthora infestans populations present in Europe in the 1840s: a critical review of historical and scientific evidence. Plant Pathol. 1996;45:1027–35.Prohens J, Ruiz JJ, Nuez F. The pepino (Solanum muricatum, Solanaceae): A “new” crop with a history. Econ Bot. 1996;50:355–68.Heiser CB. Origin and Variability of the Pepino (Solanum Muricatum). In: Preliminary Report. 1964.Ahmad H, Khan A, Muhammad K, Nadeem MS, Ahmad W, Iqbal S, Nosheen A, Akbar N, Ahmad I, Que Y. Morphogenetic study of pepino and other members of solanaceae family. Am J Plant Sci. 2014;5:3761.Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.McKain MR, Wickett N, Zhang Y, Ayyampalayam S, McCombie WR, Chase MW, Pires JC, de Pamphilis CW, Leebens-Mack J. Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am J Bot. 2012;99:397–406.Barker MS, Vogel H, Schranz ME. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol. 2009;1:391–9.Rensink W, Lee Y, Liu J, Iobst S, Ouyang S, Buell CR. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics. 2005;6:124.Koenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat A V, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylor-Teeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha NR, Maloof JN. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110:E2655–62.Blanca JM, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, Garcia-Mas J, PicĂł MB. Melon transcriptome characterization: Simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species. Plant Genome. 2011;4:118–31.Blanca J, Canizares J, Roig C, Ziarsolo P, Nuez F, Pico B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.Howe GT, Yu J, Knaus B, Cronn R, Kolpak S, Dolan P, Lorenz WW, Dean JF. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics. 2013;14:137.Consortium TG. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–41.Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–95.Anderson GJ, Jansen RK. Biosystematic and molecular systematic studies of Solanum section Basarthrum and the origin and relationships of the pepino (S. muricatum). In: Proceedings of the VI Congreso Latinoamericano de botanica: Mar del Plata, Argentina. 1994. p. 2–8.Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.Swiss Prot [ http://web.expasy.org/docs/swiss-prot_guideline.html ]. Accessed 29 Apr 2016.SGN release versionITAG2.4 [ ftp://ftp.sgn.cornell.edu/tomato_genome/annotation/ ]. Accessed 29 Apr 2016.Uniref [ http://www.ebi.ac.uk/uniprot/database/download.html ]. Accessed 29 Apr 2016.Wei D-D, Chen E-H, Ding T-B, Chen S-C, Dou W, Wang J-J. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein) using transcriptome sequences. PLoS One. 2013;8:e80046.Li D, Deng Z, Qin B, Liu X, Men Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics. 2012;13:192.Lulin H, Xiao Y, Pei S, Wen T, Shangqin H. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One. 2012;7:e38653.Mitraki A, Barge A, Chroboczek J, Andrieu JP, Gagnon J, Ruigrok RWH. Nomenclature committee of the international union of biochemistry and molecular biology (NC-IUBMB). Eur J Biochem. 1999;264:610–50.Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov N V. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol. 2013;14:R60.Garzon-Martinez GA, Zhu ZI, Landsman D, Barrero LS, Marino-Ramirez L. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genomics. 2012;13:151.Wang L, Li J, Zhao J, He C. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front Plant Sci. 2015;6:248.Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999;99:138–48.Peralta IE, Spooner DM. Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot. 2001;88:1888–902.Martins TR, Barkman TJ, Smith JF. Reconstruction of Solanaceae phylogeny using the nuclear gene SAMT. Syst Bot. 2005;30:435–47.Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A, Tanksley SD. Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics. 2008;180:391–408.Garrison E. FreeBayes. In: Marth Lab. 2010.Collins DW, Jukes TH. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics. 1994;20:386–96.Xie F, Burklew CE, Yang Y, Liu M, Xiao P, Zhang B, Qiu D. De novo sequencing and a comprehensive analysis of purple sweet potato (Ipomoea batatas L.) transcriptome. Planta. 2012;236:101–13.Mooers AØ, Holmes EC. The evolution of base composition and phylogenetic inference. Trends Ecol Evol. 2000;15:365–9.Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin-I T, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, et al. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics. 2010;11:210.Crookshanks M, Emmersen J, Welinder KG, Nielsen KL. The potato tuber transcriptome: analysis of 6077 expressed sequence tags. FEBS Lett. 2001;506:123–6.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.Lester RN. Evolutionary relationships of tomato, potato, pepino, and wild species of Lycopersicon and Solanum. In: Hawkes JG, Lester RN, Nee M, Estrad N, editors. Solanaceae III Taxonomy, Chem Evol Kew Linn Soc London. 1991. p. 283–301.Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech. 2008;26:1301–8.ClĂ© C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry. 2008;69:2149–56.Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol. 2004;22:746–54.Prohens J, SĂĄnchez MC, RodrĂ­guez-Burruezo A, CĂĄmara M, Torija E, Nuez F. Morphological and physico-chemical characteristics of fruits of pepino (Solanum muricatum), wild relatives (S. caripense and S. tabanoense) and interspecific hybrids. Implications in pepino breeding. Eur J Hortic Sci. 2005;70:224.Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, D’iez MJ, Francis D, Causse M, van der Knaap E, Cañizares J. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. 2015;16:1–19.Rong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, de Jong TJ, Klinkhamer PGL, Smulders MJM, Vrieling K. New insights into domestication of carrot from root transcriptome analyses. BMC Genomics. 2014;15:895.Swanson-Wagner R, Briskine R, Schaefer R, Hufford MB, Ross-Ibarra J, Myers CL, Tiffin P, Springer NM. Reshaping of the maize transcriptome by domestication. Proc Natl Acad Sci. 2012;109(29):11878–83.Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23:1229–32.Park T, Vleeshouwers V, Jacobsen E, Van Der Vossen E, Visser RGF. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breed. 2009;128:109–17.Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971–2.Zhai L, Xu L, Wang Y, Cheng H, Chen Y, Gong Y, Liu L. Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.). Mol Breed. 2014;33:611–24.Ahn Y-K, Tripathi S, Kim J-H, Cho Y-I, Lee H-E, Kim D-S, Woo J-G, Yoon M-K. Microsatellite marker information from high-throughput next-generation sequence data of Capsicum annuum varieties Mandarin and Blackcluster. Sci Hortic. 2014;170:123–30.Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 2000;10:72–80.Li Y, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11:2453–65.Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 2005;23:48–55.Anderson GJ. The variation and evolution of selected species of Solanum section Basarthrum. Brittonia. 1975;27:209–22.Murray BG, Hammett KRW, Grigg FDW. Seed set and breeding system in the pepino Solanum muricatum Ait., Solanaceae. Sci Hortic (Amsterdam). 1992;49:83–92.Perez-de-Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Pico B. Application of genomic tools in plant breeding. Curr Genomics. 2012;13:179–95.Ruiz JJ, Prohens J, Nuez F. “Sweet Round” and “Sweet Long”: Two pepino cultivars for Mediterranean, climates. HortSci. 1997;32:751–2.FASTAQC [ http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ]. Accessed 29 Apr 2016.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.Blanca JM, Pascual L, Ziarsolo P, Nuez F, Cañizares J. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence. BMC Genomics. 2011;12:1–8.Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I, Eshed Y, Zamir D. The making of a compound inflorescence in tomato and related nightshades. PLoS Biol. 2008;6:e288.Zhang Y, Hu Z, Chu G, Huang C, Tian S, Zhao Z, Chen G. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). J Agric Food Chem. 2014;62:2906–12.Kohara A, Nakajima C, Hashimoto K, Ikenaga T, Tanaka H, Shoyama Y, Yoshida S, Muranaka T. A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol. 2005;57:225–39.Gramazio P, Prohens J, Plazas M, Andujar I, Herraiz FJ, Castillo E, Knapp S, Meyer RS, Vilanova S. Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol. 2014;14:350–014–0350–z.Klann E, Yelle S, Bennett AB. Tomato fruit Acid invertase complementary DNA: nucleotide and deduced amino Acid sequences. Plant Physiol. 1992;99:351–3.Lam Cheng KL. Golden2--like (GLK2) Transcription Factor: Developmental Control of Tomato Fruit Photosynthesis and Its Contribution to Ripe Fruit Characteristics. Davis: University of California; 2013.Mott R. EST_GENOME: A program to align spliced DNA sequences to unspliced genomic DNA. Comput Appl Biosci. 1997;13:477–8.EMBOSS [ http://www.bioinformatics.nl/emboss-explorer/ ]. Accessed 29 Apr 2016.Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.Abajian C. Sputnik. University of Washington Department of Molecular Biotechnology. 1994.[ http://wheat.pw.usda.gov/ITMI/EST-SSR/LaRota ]. Accessed 29 Apr 2016

    Fruit composition diversity in land races and modern pepino (Solanum muricatum) varieties and wild related species

    Full text link
    [EN] Pepino (Solanum muricatum) fruits from 15 accessions of cultivated pepino as well as six accessions from wild relatives were evaluated for contents in dry matter, protein, b-carotene, chlorophylls and seven minerals. Several-fold differences among accessions were found for most traits. Average values obtained were similar to those of melon and cucumber, but the phenolic contents were much higher. Wild species had significantly higher average contents for all traits vs. the cultivated pepino accessions. And, the comparisons among the cultivated pepino varieties showed that the modern varieties were more uniform in composition, and they possessed significantly lower concentrations of protein, P, K, and Zn than local land races. Most of the significant correlations among composition traits were positive. Our studies show that regular consumption of pepino fruits could make a significant contribution to the recommended daily intake of P, K, Fe and Cu as well as to the average daily intake of phenolics. Furthermore, the higher values for most nutrients measured in the wild species and in the local land races indicate that new pepino varieties with improved fruit contents in nutrient and bioactive compounds can be developed.Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract.Herraiz García, FJ.; Raigón Jiménez, MD.; Vilanova Navarro, S.; García-Martínez, MD.; Gramazio, P.; Plazas Ávila, MDLO.; Rodríguez Burruezo, A.... (2016). Fruit composition diversity in land races and modern pepino (Solanum muricatum) varieties and wild related species. Food Chemistry. 203:49-58. https://doi.org/10.1016/j.foodchem.2016.02.035S495820

    A glimpse into relapsed refractory multiple myeloma treatment in real-world practice in Spain: the GeminiS study

    Get PDF
    Relapsed-refractory multiple mieloma; Monoclonal antibodies; Observational multicenter studyMieloma mĂșltiple recidivant-refractari; Anticossos monoclonals; Estudi observacional multicĂšntricMieloma mĂșltiple recidivante-refractario; Anticuerpos monoclonales; Estudio multicĂ©ntrico observacionalObjectives: To describe the incorporation of monoclonal antibodies (mAb) in real-world (RW) practice for the treatment of patients with relapsed refractory multiple myeloma (RRMM) in a setting with other treatment alternatives. Methods: This was an observational, multicenter, ambispective study of RRMM treated with or without a mAb. Results: A total of 171 patients were included. For the group treated without mAb, the median (95% CI) progression-free survival (PFS) to relapse was 22.4 (17.8-27.0) months; partial response or better (≄PR) and complete response or better (≄CR) was observed in 74.1% and 24.1% of patients, respectively; and median time to first response in first relapse was 2.0 months and in second relapse was 2.5 months. For the group of patients treated with mAb in first or second relapse, the median PFS was 20.9 (95% CI, could not be evaluated) months; the ≄ PR and ≄ CR rates were 76,2% and 28.6%, respectively; and the median time to first response in first relapse was 1.2 month and in second relapse was 1.0 months. The safety profiles for the combinations were consistent with those expected. Conclusions: The incorporation of mAb in RW practice for the treatment of RRMM has shown good quality and speed of response with a similar safety profile shown in randomized clinical trials. Keywords: Relapsed-refractory multiple myeloma; daratumumab; monoclonal antibodies; real-world; standard of care

    Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena)

    Full text link
    [EN] Introgression breeding can contribute to broadening the genetic background of eggplant (Solanum melongena). We used six eggplant varieties and 44 interspecific hybrids between these eggplant accessions and 10 accessions of wild relatives from the primary genepool species S. insanum and secondary genepool species S. anguivi, S. dasyphyllum, S. incanum, S. lichtensteinii, and S. tomentosum to obtain first backcross generations to S. melongena. Pollen viability in cultivated and wild parents and interspecific hybrids with S. insanum was high, while for interspecific hybrids with secondary genepool species it was variable. First backcross generations to S. melongena were obtained with interspecific hybrids of all the wild species, with the best results being obtained in crosses with hybrids between S. melongena and S. insanum. However, ample differences were observed among eggplant varieties in the success of the crosses. Additionally, the six eggplant varieties were crossed with secondary genepool species S. campylacanthum, S. lidii and S. vespertilio and with tertiary genepool species S. bonariense, S. elaeagnifolium and S. sisymbriifolium with the aim of obtaining new interspecific hybrids. Successful interspecific hybridization was achieved with the three new secondary genepool species tested and, using embryo rescue, with the tertiary genepool species S. elaeagnifolium. The new backcross generations and interspecific hybrids obtained will contribute to broadening the genetic background of the eggplant and to the genetic enhancement of this crop.This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Mew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/. This work has also been funded in part by European Union's Horizon 2020 research and innovation programme under grant agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER, EU). Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract.Kouassi, B.; Prohens Tomås, J.; Gramazio, P.; Kouassi, A.; Vilanova Navarro, S.; Galån-Ávila, A.; Herraiz García, FJ.... (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae. 213:199-207. https://doi.org/10.1016/j.scienta.2016.10.039S19920721
    • 

    corecore