31,845 research outputs found
Does the thermal spike affect low-energy ion-induced interfacial mixing?
Molecular dynamics simulations have been used to obtain the three-dimensional
distribution of interfacial mixing and cascade defects in Ti/Pt multilayer
system due to single 1 keV impacts at grazing angle of incidence. The
Ti/Pt system was chosen because of its relatively high heat of mixing in the
binary alloy and therefore a suitable candidate for testing the effect of heat
of mixing on ion-beam mixing. However, the calculated mixing profile is not
sensitive to the heat of mixing. Therefore the thermal spike model of mixing is
not fully supported under these irradiation conditions. Instead we found that
the majority of mixing occurs after the thermal spike during the relaxation
process. These conclusions are supported by liquid, vacancy as well as adatom
analysis. The interfacial mixing is in various aspects anomalous in this
system: the time evolution of mixing is leading to a phase delay for Ti mixing,
and Pt exhibits an unexpected double peaked mixing evolution. The reasons to
these effects are discussed.Comment: 7 pages, 12 figures, Nucl. Instr. Meth. B211, 524. (2003
Promoting transparency through information : A global review of school report cards
The report examines the development of school report cards (SRCs) in selected countries around the world, with a particular emphasis on developing countries. It is intended to assist policy-makers and programme implementers in making informed decisions about how to use SRCs. The report includes: a review of the existing literature, interviews with 22 individuals at various levels of government covering different areas of responsibility connected with implementing countries, a descriptive summary of 14 countries, a summary of structures that can help review efforts undertaken to date, a set of newly developed indicators that integrate issues of accountability and anti-corruption effectiveness in the interpretation of SRCs, selected summaries and suggestions for improvement. The document builds on a USAID Working Paper developed in 2006 for the EQUIP 2 Project (Cameron, Moses, and Gillies, 2006) and examines cases in which report cards have proven especially successful in helping to improve transparency and accountability in education systems. It presents interview and survey findings from 14 countries where SRCs have been implemented in recent years, and compares their design and implementation. It gauges the settings for SRCs through an accountability and transparency index based on the authors’ observations, and examines whether and how SRCs can be used as part of the toolkit in the fight against corruption in the education sector. Finally, it proposes an implementation framework to help improve the delivery of education services and reduce corrupt practices. Some key highlights are: School report cards can be powerful tools to engage communities and hold schools accountable for providing students with a high-quality education. If the process is inclusive and participatory, SRCs can serve as a unique channel allowing education stakeholders to make more informed decisions based on school-level data. Reporting in SRCs appears to be more comprehensive than before. More comprehensive models include measuring outputs – a key factor in accountability – and parent perception. Most countries that appear to be less successful in SRC implementation lack a good understanding of SRC standards and what consequences can be expected based on SRC results. Most SRCs are missing clear, effective accountability measures, as well as clear links to those capable of making changes. More systematic efforts to employ SRCs to identify corruption often focus on specific areas, such as corruption in finance, teacher behaviour, and information systems. The exact relationship between implementation of SRCs and a country’s perceived level of education corruption is unclear. A number of countries with higher levels of perceived corruption in education are among those using more sophisticated SRC approaches. Accountability is a key element in the fight against corruption, and is led, in part, by transparency. Three case study areas, namely Indonesia, Brazil, and the state of Virginia in the United States, employ a combination of transparency and measurable consequences, which increase the accountability of schools
Protection of outbred mice against a vaginal challenge by a Chlamydia trachomatis serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant.
Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-γ production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis
Virasoro Symmetry of Constrained KP Hierarchies
Additional non-isospectral symmetries are formulated for the constrained
Kadomtsev-Petviashvili (\cKP) integrable hierarchies. The problem of
compatibility of additional symmetries with the underlying constraints is
solved explicitly for the Virasoro part of the additional symmetry through
appropriate modification of the standard additional-symmetry flows for the
general (unconstrained) KP hierarchy. We also discuss the special case of \cKP
--truncated KP hierarchies, obtained as Darboux-B\"{a}cklund orbits of initial
purely differential Lax operators. The latter give rise to Toda-lattice-like
structures relevant for discrete (multi-)matrix models. Our construction
establishes the condition for commutativity of the additional-symmetry flows
with the discrete Darboux-B\"{a}cklund transformations of \cKP hierarchies
leading to a new derivation of the string-equation constraint in matrix models.Comment: LaTeX, 11 pg
Double Field Inflation
We present an inflationary universe model which utilizes two coupled real
scalar fields. The inflation field experiences a first order phase
transition and its potential dominates the energy density of the Universe
during the inflationary epoch. This field is initially trapped in its
metastable minimum and must tunnel through a potential barrier to reach the
true vacuum. The second auxiliary field couples to the inflaton field
and serves as a catalyst to provide an abrupt end to the inflationary epoch;
i.e., the field produces a time-dependent nucleation rate for bubbles of
true vacuum. In this model, we find that bubbles of true vacuum can
indeed percolate and we argue that thermalization of the interiors can more
easily take place. The required degree of flatness (i.e., the fine tuning) in
the potential of the field is comparable to that of other models which
invoke slowly rolling fields. Pseudo Nambu-Goldstone bosons may naturally
provide the flat potential for the rolling field.Comment: 18 pages, 2 figures, This early paper is being placed on the archive
to make it more easily accessible in light of recent interest in reviving
tunneling inflationary models and as its results are used in an accompanying
submissio
On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within
In this chapter, we analyze the steady-state microscale fluid--structure
interaction (FSI) between a generalized Newtonian fluid and a hyperelastic
tube. Physiological flows, especially in hemodynamics, serve as primary
examples of such FSI phenomena. The small scale of the physical system renders
the flow field, under the power-law rheological model, amenable to a
closed-form solution using the lubrication approximation. On the other hand,
negligible shear stresses on the walls of a long vessel allow the structure to
be treated as a pressure vessel. The constitutive equation for the microtube is
prescribed via the strain energy functional for an incompressible, isotropic
Mooney--Rivlin material. We employ both the thin- and thick-walled formulations
of the pressure vessel theory, and derive the static relation between the
pressure load and the deformation of the structure. We harness the latter to
determine the flow rate--pressure drop relationship for non-Newtonian flow in
thin- and thick-walled soft hyperelastic microtubes. Through illustrative
examples, we discuss how a hyperelastic tube supports the same pressure load as
a linearly elastic tube with smaller deformation, thus requiring a higher
pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final
form of invited contribution to the Springer volume entitled "Dynamical
Processes in Generalized Continua and Structures" (in honour of Academician
D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov
and A. V. Porubo
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Far Ultraviolet Observations of the Dwarf Nova VW Hyi in Quiescence
We present a 904-1183 A spectrum of the dwarf nova VW Hydri taken with the
Far Ultraviolet Spectroscopic Explorer during quiescence, eleven days after a
normal outburst, when the underlying white dwarf accreter is clearly exposed in
the far ultraviolet. However, model fitting show that a uniform temperature
white dwarf does not reproduce the overall spectrum, especially at the shortest
wavelengths. A better approximation to the spectrum is obtained with a model
consisting of a white dwarf and a rapidly rotating ``accretion belt''. The
white dwarf component accounts for 83% of the total flux, has a temperature of
23,000K, a v sin i = 400 km/s, and a low carbon abundance. The best-fit
accretion belt component accounts for 17% of the total flux, has a temperature
of about 48,000-50,000K, and a rotation rate Vrot sin i around 3,000-4,000
km/s. The requirement of two components in the modeling of the spectrum of VW
Hyi in quiescence helps to resolve some of the differences in interpretation of
ultraviolet spectra of VW Hyi in quiescence. However, the physical existence of
a second component (and its exact nature) in VW Hyi itself is still relatively
uncertain, given the lack of better models for spectra of the inner disk in a
quiescent dwarf nova.Comment: 6 figures, 10 printed page in the journal, to appear in APJ, 1 Sept.
2004 issue, vol. 61
Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan
Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches.
Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach.
Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy.
Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery
- …
