6 research outputs found

    Does light exposure make plant litter more degradable?

    No full text
    Many field experiments have indicated that litter decomposition in semi-arid areas may be partly or fully controlled by photodegradation. We devised a study to test our hypothesis that light exposure makes plant litter more degradable. Dry, senescent, aboveground plant litter from Miscanthus x giganteus was exposed to light including ultraviolet (UV) radiation for various lengths of time from 0 to 289days. Weight loss was measured after exposure and appeared to be modest and did not increase with time of exposure. The litter of the longest and shortest exposure time as well as controls were then incubated with soil and moisture for 35days and CO2 and N2O production were measured. The longest exposed litter degraded much faster than any other treatment during incubation with moisture, about twice as fast as the unexposed control. The shortest exposed however, degraded only slightly faster than the unexposed control. This suggests that increasing litter degradability is a more important mechanism for photodegradation than direct light-induced mass loss. N2O production from decomposition of the exposed litter was high in the beginning, suggesting that nitrogen may be released quickly. The mechanism is probably that light exposure leaves the nitrogen in plant litter easily available to microbial utilisation upon wetting. Such a mechanism might play an important role for nutrient cycling in semi-arid areas

    Locating food in a spatially heterogeneous environment: Implications for fitness of the macrodecomposer Armadillidium vulgare (Isopoda: Oniscidea)

    No full text
    To assess the fitness consequences of foraging on patchy resources, consumption rates, growth rates and survivorship of Armadillidium vulgare were monitored while feeding in arenas in which the spatial distribution of patches of high quality food (powdered dicotyledonous leaf litter) was varied within a matrix of low quality food (powdered grass leaf litter). Predictions from behavioural experiments that these fitness correlates would be lower when high quality food is more heterogeneously distributed in space were tested but not supported either by laboratory or field experiments. To investigate whether A. vulgare can develop the ability to relocate high quality food patches, changes in foraging behaviour, over a comparable time period to that used in the fitness experiments, were monitored in arenas in which there was a high quality food patch in a low quality matrix. A. vulgare increased its ability to relocate the position of high quality food over time. It reduced time spent in low quality food matrices and increased time spent in high quality food patches with time after the start of the experiment. When the position of a high quality food patch was moved, the time spent in the low quality food matrix increased and less time was spent in high quality food patches, compared to arenas in which the food was not moved. The fitness benefits for saprophages of developing the ability to relocate high quality patches while foraging in spatially heterogeneous environments are discussed
    corecore